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ABSTRACT

We developed a Bayesian model to invert magnetotelluric
(MT) data using a 2D sharp boundary parameterization. We
divided the 2D cross section into layers and considered the
locations of interfaces and resistivity of the regions formed
by the interfaces as random variables. We assumed that those
variables are independent in the vertical direction and depen-
dent along the lateral direction, whose spatial dependence is
described by either pairwise difference or multivariate Gaus-
sian priors. We used a parallel, adaptive finite-element algo-
rithm to rapidly forward simulate frequency-domain MT
responses of the 2D resistivity structure and used Markov
chain Monte Carlo methods to draw many samples from
the joint posterior probability distribution. We applied the
Bayesian model to a synthetic case that mimics a geothermal
exploration scenario. Our results demonstrated that the de-
veloped method is effective in estimating the resistivity and
depths to interfaces and in quantifying uncertainty on the
estimates. We also applied the developed method to the field
MT data collected from the Darajat geothermal site in
Indonesia. We compared our inversion results with those
obtained from a deterministic inversion of 3D MT data; they
are consistent even if the two inversion methods are very
different and the amount of information used for inversion
is different.

INTRODUCTION

Current approaches for geophysical inverse problems are mainly
gradient-based deterministic methods, such as Gauss-Newton

methods (Pratt et al., 1998), conjugate gradient methods (Newman
and Alumbaugh, 2000), and steepest decent techniques (Roy,
2002). Those methods have been successfully used to solve a wide
range of complex inverse problems with tens of millions of un-
knowns. However, the solutions obtained using the methods often
depend on the choice of initial values and thus are local rather than
global. Additionally, the deterministic methods provide very limited
uncertainty information on the estimated parameters.
Stochastic inversion methods have been recognized recently as a

powerful approach for solving geophysical inverse problems; many
successful applications can be found in the literature (e.g., Mose-
gaard and Tarantola, 1995; Bosch, 1999, 2004; Maliverno, 2002;
Eidsvik et al., 2004; Tarantola, 2005). Stochastic methods have sev-
eral advantages over deterministic inversion methods. As demon-
strated by Chen et al. (2008), stochastic inversion methods can
provide extensive information about unknown parameters; inver-
sion results are almost independent of initial values and therefore
global and robust.
Because stochastic methods often need to run forward models

tens of thousands of times, current applications are limited to pro-
blems where fast forward models are available, such as inversion of
1D seismic data (Gunning and Glinsky, 2004) and joint inversion of
1D seismic amplitude versus angles and controlled-sources electro-
magnetic (CSEM) data (Chen et al., 2007; Chen and Hoversten,
2012). Stochastic methods have also been applied to inversion of
parameters on 2D domains when forward calculations are fast or
can be approximated using simplified models. For example, Bodin
and Sambridge (2009) develop a Bayesian model for seismic tomo-
graphy inversion by using the fast-marching method (Sethian and
Popovici, 1999) to calculate traveltimes and raypaths in a laterally
heterogeneous medium. Irving and Singha (2010) develop a sto-
chastic method to invert tracer test and electrical resistivity data
for hydraulic conductivity tomography by using simplified models.
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Stochastic inversion of magnetotelluric (MT) and CSEM data on
2D or 3D media remains very challenging because of the lack of fast
forward models. However, with the rapid growth in computing
power, especially parallel computing techniques and recent devel-
opment of forward simulation methods, many fast forward algo-
rithms are becoming available. For example, Key and Ovall
(2011) develop a fast, parallel algorithm that computes 2D MT
and CSEM responses for complex models with realistic data para-
meters in a few to tens of seconds when it is run on large clusters
(>50 nodes). These new capabilities make it feasible to implement
2D stochastic inversion for MT and CSEM data sets.
Several deterministic methods were developed to invert 2D MT

data for mapping large scale structures for the purpose of petroleum
and geothermal exploration in the past decades. For instance, de
Groot-Hedlin and Constable (1990) develop an Occam’s inversion
method to generate smooth 2D models using a grid-base parame-
terization; Smith and Booker (1991) develop a rapid inversion
method by approximation. To better estimate large structures from
2DMT data, Smith et al. (1999) and de Groot-Hedlin and Constable
(2004) develop algorithms based on sharp boundary parameteriza-
tions. By carefully choosing the starting models, they could obtain
inversion results that are supported by other sources of information.
However, they find that the inversion results are subject to a large
degree of uncertainty and the optimal solutions depend on the
choice of the initial models.
We explore the use of stochastic inversion approaches for invert-

ing 2D MT data in this study by using a newly developed parallel,
goal-oriented, adaptive finite-element algorithm (Key and Ovall,
2011) to forward simulate MT responses. We start from a sharp
boundary parameterization because it requires significantly fewer
unknowns compared with grid-based parameterizations, although
it is versatile enough to solve a wide range of problems. We develop
a Bayesian model to estimate the locations of sharp boundaries and
resistivity of the regions formed by the boundaries. The spatial de-
pendence of unknown parameters is described by the pairwise dif-
ference or multivariate Gaussian priors, depending on prior
information available. We solve the inverse problem using Markov

chain Monte Carlo (MCMC) sampling methods (Gilks et al., 1996).
We first use a synthetic study to test the developed Bayesian model
and then apply the model to the field MT data sets collected from
the Darajet geothermal site in Indonesia.

METHODOLOGY

Sharp boundary parameterization and Bayesian model

We develop a Bayesian model using the sharp boundary method
as used by Smith et al. (1999) and Auken and Christiansen (2004).
The term “sharp boundary” is different from the one used with the
L1 norm inversion. As pointed out by Auken and Christiansen
(2004), although the L1 inversion method tends to give a more
blocky appearance of model sections (Loke et al., 2001), the layer
boundaries are still smeared. Figure 1 shows a schematic diagram of
the parameterization, where the dashed arrows point to the bounds
that are several hundreds of kilometers away from the focus area
and the solid lines represent sharp boundaries (or interfaces).
We assume that the maximum domain size and the ground surface
locations are predetermined. In the figure, the solid ovals, rectan-
gles, and triangles represent inner estimation nodes; we estimate
resistivity and/or depths associated with each of those inner
nodes, depending on the interface. For a given inverse problem,
such a parameterization often has a minimal number of unknown
parameters.
We obtain resistivity images from specifications of the 2D resis-

tivity structure by linearly interpolating resistivity values at the in-
ner nodes. We divide each trapezoid that is formed by the four
adjacent nodes (see Figure 1) into several subblocks, typically three
to six, depending on the sharpness of the lateral resistivity transi-
tion. We assume that resistivity in each subblock is constant and it is
calculated by laterally interpolating the resistivity values at the two
upper nodes of the trapezoid.
Let m be the total number of sharp boundaries, including the

ground surface. Although the total number of inner estimation
nodes can vary from one interface to another, we assume that it
is constant for ease of description and let n be the number. We es-
timate logarithmic resistivity rki at each inner node starting from the
ground surface, where k ¼ 1; 2; · · · ; m − 1, and i ¼ 1; 2; · · · ; n. We
also estimate logarithmic resistivity in the bedrock and denote it as
r0. To simplify description, we let vector rk ¼ ðrk1; rk2; · · · ; rknÞT
represent the unknown resistivity on interface k, where T represents
the transpose of the vector. We estimate logarithmic depth dki at
each inner node from interface 2 to interface m, where
k ¼ 2; 3; · · · ; m, and i ¼ 1; 2; · · · ; n. Similarly, we let vector dk ¼
ðdk1; dk2; · · · ; dknÞT represent the unknown depths on interface k.
The MT data used for our inversion are the apparent resistivity

and phases of complex impedance Zxy and Zyx defined by Smith
and Booker (1991), with x aligned with the strike of the structure,
y perpendicular to the strike, and z positive downward. Impedance
Zxy is referred to as the MT data in the transverse electric (TE) mode
in which the electric field is parallel to the strike of the structure, and
impedance Zyx is referred to as the MT data in the transverse mag-
netic (TM) mode in which the electric current flow perpendicular to
the strike (Smith and Booker, 1991). Numerical 3D forward mod-
eling shows that TM-mode MT data are more robust than the cor-
responding TE-mode data to non-2D effects, such as finite strike
and static shifts (Wannamaker et al., 1984; Hoversten et al.,
1998; Newsman et al., 2008). For ease of description, we introduce

Air

Bedrock

Resistivity DepthResistivity and depth

Figure 1. A schematic diagram of the sharp boundary parameter-
ization. The dashed-lines with arrows point to the domain bounds
far away from the focus area. The solid ovals, triangles, and rectan-
gles are the nodes linked to unknown resistivity, depths, and both
resistivity and depths, respectively.
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four index numbers to show data types, among which 1 and 2 are
referred to as the TE-mode apparent resistivity and phases, and 3
and 4 are referred to as the TM-mode apparent resistivity and
phases. Let zobsstl be the lth type of MT data for the sth frequency
at the tth site, where s ¼ 1; 2; · · · ; nf, t ¼ 1; 2; · · · ; ns, and
l ¼ 1, 2, 3, 4. Symbols nf and ns represent the total number of
frequencies and sites, respectively.
Let vector z represent all the MT data arranged by frequencies,

sites, and data types. Let vector d ¼ ðdT2 ; dT3 ; · · · ; dTmÞT represent all
the unknown depths and vector r ¼ ðr0; rT1 ; rT2 ; · · · ; rTm−1ÞT repre-
sent all the unknown resistivity. We thus have the following Baye-
sian model

fðr;djzÞ ∝ fðzjr; dÞfðrÞfðdÞ: (1)

Equation 1 defines a joint posterior probability distribution function
of all unknown parameters, which is known up to a normalizing
constant. The first term on the right side of the equation is referred
to as the likelihood function of MT data, which is the link
between the unknown parameters and the MT data. The second
and third terms are the prior probability distributions of resistivity
and depths, respectively.

Numerical forward model and likelihood function

We use a parallel, adaptive finite-element algorithm developed by
Key and Ovall (2011) to compute the frequency-domain MT re-
sponses of a given 2D electrical resistivity structure. The discretiza-
tion of a model domain using an unstructured triangular element
grid readily accommodates complex structures. Specifically, the fi-
nite-element grid is generated by finding a constrained conforming
Delaunay triangulation for a given input polygonal boundary struc-
ture (Shewchuk, 1996); therefore, this is ideally suited for the sharp
boundary parameterization. An automated, adaptive grid refinement
algorithm is implemented in which the finite-element solution is
computed iteratively on successively refined grids to ensure an ac-
curate and efficient solution for a given model structure. In the pre-
sent context, this is useful over traditional, static grid methods
because the refinement ensures the solution accuracy is maintained
as the model parameters (i.e., resistivity and depths to interfaces)
change during the inversion sampling process.
The choice of elements for refinement is accomplished by using

an a posteriori error estimator based on a recently developed
dual-weighted residual operator (Key and Ovall, 2011). The

dual-weighting method essentially applies a receiver-based sensitiv-
ity function to the error estimates, thereby allowing for a more effi-
cient grid refinement than possible with simple global error
estimators. The residual operator at the core of the error estimation
is computed using a hierarchical basis, which has been found to be
more robust for heterogeneous models than the gradient-based error
estimator considered in earlier works by Key and Weiss (2006) and
Li and Key (2007).
Furthermore, the new algorithm has been parallelized so that it

can compute accurate, adaptively refined solutions quickly. For the
MT computations, the algorithm runs in parallel in two ways. First,
the adaptive refinement computations are performed independently
in parallel for each frequency. This allows for a rapid solution and
also ensures that each frequency has a unique adaptively refined
mesh that is accurate for that frequency. The second aspect of
the parallelization involves grouping the MT receivers into small
subsets so that the adaptive refinement computations are run in
parallel for each subset. This allows the adaptive refinement to con-
verge more rapidly because each task only needs to find an adaptive
mesh that is accurate for its subset of receivers. For small clusters, it
can compute MT responses for models of the size described here in

Table 1. Geostatistical parameters for generating the true resistivity cross section using the exponential variogram. The
resistivity values at the reservoir layer are specified and the bedrock resistivity is assumed to be constant.

Layers

Depth (m) Resistivity

Mean (m)
Standard

deviation (m)
Correlation
length (m)

Mean
(ohm-m)

Standard deviation
(ohm-m)

Correlation
length (m)

Layer-1 (Overburden) 100.0 40.0 2000.0
Layer-2 (Clay Cap) 500.0 50.0 2000.0 2.0 0.4 4000.0
Layer-3 (Reservoir) 800.0 80.0 4000.0
Layer-4 (Transition) 3000.0 300.0 6000.0 80.0 16.0 8000.0
Layer-5 (Bedrock) 5000.0 500.0 8000.0 30.0

Figure 2. Synthetic 2D resistivity structure. The small triangles re-
present MT survey stations and the solid curves represent the
boundaries with sharp contrasts in resistivity.
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only a few tens of seconds, while on larger clusters (>50 nodes), it
can compute responses in a few seconds. This makes 2D stochastic
inversion of MT data feasible.
The likelihood function of MT data is determined by character-

istics of the differences or total errors between the MT data and their
corresponding simulation results. The determination of the likeli-
hood function plays an important role in the parameter estimation
because it is the only linkage between the unknown parameters and
the MT data. The total errors are closely related to the errors in mea-
surements and in forward modeling; correctly characterizing them
is very difficult in practice because measurement errors are often
affected by many factors, such as acquisition geometry and postpro-
cessing, while errors in forward modeling are often affected by nu-
merical methods and sometimes mathematical models. Because
investigating the effects of the total errors on inversion results is
not our focus in the current study, we replace the total errors with
the measurement errors. Such simplification is valid as long as the
errors in the numerical forward modeling are significantly smaller
than the measurement errors, which is the case of the current study.
Let εstl be the measurement error for MT data zobsstl and let varðεstlÞ be
the variance. By assuming that the errors are independent for
different frequencies, sites, and data types, we have the following
likelihood function

fðzjr; dÞ ¼
Ynf

s¼1

Yns

t¼1

Y4

l¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πvarðεstlÞ

p exp

"
−0.5

ε2stl
varðεstlÞ

#
:

(2)

The independency and normality assumptions are not critical for the
Bayesian model and they can be modified by assuming those errors
are correlated and have other types of probability distributions, such
as the multivariate t distribution as used by Chen et al. (2010).

Prior probability distribution of resistivity

We can incorporate other types of information into the model
through prior distributions, such as lower and upper bounds and
spatial dependence or smoothness of the unknown parameters.
Let a0 and b0 be the lower and upper bounds of the bedrock resis-
tivity and let vectors ak and bk be the lower and upper bounds of the
resistivity vector on interface k; hence, we have r0 ∈ ða0; b0Þ and
rk ∈ ðak; bkÞ. We assume that resistivity within each layer is
spatially independent in the vertical direction but dependent in
the lateral direction as done by many other studies (Smith et al.,
1999; Auken and Christiansen, 2004). If we further assume that
r0 is uniformly distributed on ða0; b0Þ, we can write the joint prior
distribution of resistivity in equation 1 as follows:

fðrÞ ¼ Ind½r0 ∈ ða0; b0Þ%

×
Ym−1

k¼1

fInd½rk ∈ ðak; bkÞ% × fðrkÞg; (3)

where Ind½A% represents the indicator function having the value of
one if the condition A is satisfied and the value of zero, otherwise.
We define fðrkÞ using either the first-order pairwise-difference

priors as given by Besag et al. (1995) or multivariate Gaussian mod-
els, depending on applications and information available. The pair-
wise-difference prior is similar to the controls on the roughness or
smoothness in the deterministic inversion (Smith et al., 1999), and it
is given by

fðrkÞ ∝ exp

$
−
X

i∼j
wr
kði; jÞ

jrki − rkjj
σrk

%
; (4)

where σrk is the standard deviation showing resistivity variation
along the lateral direction and wr

kði; jÞ is the weight that depends
on the lateral distance between nodes i and j. The summation is
over all pairs of inner nodes i ∼ j that are deemed to be neighbors
on interface k. In this study, we let the weight to be the spatial cor-
relation coefficient ρrkði; jÞ between the two nodes; we calculate it
using the exponential variogram as follows:

ρrkði; jÞ ¼ exp

$
−
jxki − xkjj

λrk

%
; (5)

where xki and xkj are the lateral coordinates of nodes i and j, and λrk
is the corresponding spatial correlation length.
We can use a multivariate Gaussian distribution as the prior if we

have information about the mean vector μr
k, such as a reference

model as used in Auken and Christiansen (2004). We may obtain
the mean from their corresponding lower and upper bounds by
μr
k ¼ ðak þ bkÞ∕2. If the bounds are wide and not symmetric near

the true value, the prior mean may be far away from the true values.
We use the exponential variogram model to calculate the covariance
matrix

Pr
k, which is the same as the one used for calculating the

spatial correlation coefficient in equation 5. The row i and column j
component of the covariance matrix is given by ðσrkÞ2ρrkði; jÞ.
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Figure 3. The rms of error-weighted misfits between the synthetic
observed and calculated apparent resistivity and phases as a func-
tion of iterations by starting from the same initial model but differ-
ent random seeds.
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Prior probability distribution of depth

We can similarly specify the prior probability distribution of
depths by considering their lower and upper bounds and lateral spa-
tial dependence. Let gk and hk be the lower and upper bounds of the
depths to interface k from the ground surface. Let σdk and λdk be the
standard deviation and the spatial correlation length of depths to
interface k. We can define the first-order pairwise-difference and
multivariate Gaussian prior models (see Appendix A).
We need to add two types of additional prior information for the

current parameterization. The first is the constraints on the order of
depths to avoid possible depth crossing. The depth of a shallower
interface cannot be greater than that of the deeper interface, i.e.,
d2 ≤ d3 ≤ · · ·≤ dk ≤ dkþ1 ≤ · · ·≤ dm. The other constraint is re-
quired by the finite-element numerical forward modeling because
of the use of automatic triangulations. If the angles between any
two adjacent edges are less than a certain value, for example,
20° (Key and Weiss, 2006), the automatic triangulation may fail.
Let φðdkÞ be the function and we have to main-
tain φðdkÞ ≥ α0, where α0 is a threshold of the
minimum angle. Consequently, we can write
the prior distribution of depths in equation 1
as follows:

fðdÞ ¼
Ym

k¼2

fInd½dk ∈ ðgk; hkÞ%

× Ind½φðdkÞ ≥ α0% × fðdkÞg

×
Ym−1

k¼2

Ind½dkþ1 ≥ dk%: (6)

Conditional probability distributions of
resistivity and depth

We can obtain the joint posterior probability
distribution function (PDF) by combing the
likelihood function in equation 1 and the prior
distributions of resistivity and depths given in
equations 3 and 6 as follows

fðr; djzÞ ∝ fðzjr; dÞ
× Ind½r0 ∈ ða0; b0Þ%

×
Ym−1

k¼1

fInd½rk ∈ ðak; bkÞ% × fðrkÞg

×
Ym

k¼2

fInd½dk ∈ ðgk; hkÞ%

× Ind½φðdkÞ ≥ α0% × fðdkÞg

×
Ym−1

k¼2

Ind½dkþ1 ≥ dk%: (7)

The joint posterior PDF in equation 7 is com-
plicated, and it is not possible to obtain analytical
solutions. Instead, we use MCMC methods to

obtain many samples from the joint PDF. To implement MCMC
algorithms, we first derive conditional probability distributions
for resistivity and depths on each layer. For the bedrock resistivity
r0, we can obtain its conditional probability distribution by drop-
ping all the terms in equation 7 that are not directly related to the
bedrock resistivity, which is given as

fðr0j ·Þ ∝ fðzjr; dÞ × Ind½r0 ∈ ða0; b0Þ%; (8)

where fðr0j ·Þ represents the conditional probability distribution of
r0, given all other unknown parameters and data, and the centered
dot represents all other unknowns and data.
Similarly, we can obtain the conditional probability distribution

of resistivity vector rk in layer k as follows:

fðrkj•Þ ∝ fðzjr; dÞ × Ind½rk ∈ ðak; bkÞ% × fðrkÞ: (9)
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Figure 4. Comparison between the synthetic observed (solid lines) and calculated
(dashed lines with circles) TM-mode apparent resistivity using the model formed from
the estimated medians of individual parameters. The vertical segments show the 95%
error bars around data.
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Because the order constraints for depths at interface k ¼ 2,
3 ≤ k ≤ m − 1, and k ¼ m are different, we need to separate them.
For 3 ≤ k ≤ m − 1, we have

fðdkj•Þ ∝ fðzjr; dÞ × Ind½dk ∈ ðgk; hkÞ% × fðdkÞ

× Ind½dk ≥ dk−1% × Ind½dkþ1 ≥ dk% × Ind½φðdkÞ ≥ α0%:
(10)

We need to drop Ind½dk ≥ dk−1% when k ¼ 2 and Ind½dkþ1 ≥ dk%
when k ¼ m in equation 10.
We can combine the order constraints with the range constraints

(i.e., lower and upper bounds) to simplify equation 10 by introdu-
cing conditional lower bound lk and upper bound uk

lk ¼
"

gk if k ¼ 2
maxfgk; dk−1g otherwise

; (11)

and

uk ¼
"

hk if k ¼ m
minfhk; dkþ1g otherwise

: (12)

Consequently, equation 10 becomes the following:

fðdkj•Þ ∝ fðzjr; dÞ × Ind½dk ∈ ðlk; ukÞ%
× Ind½φðdkÞ ≥ α0% × fðdkÞ: (13)

Markov chain Monte Carlo sampling strategies

We use a hybrid sampling method and block sampling strategies
with random scans (Tienery, 1994) for resistivity and depth vectors.
The hybrid method includes multivariate Metropolis-Hastings
(MMH) (Metropolis, 1953; Hastings, 1970) and multivariate slice
sampling methods (MSS) (Neal, 2003; Chen et al., 2007). At each
iteration, we first randomly select an interface (e.g., the kth layer)

and then update resistivity vector rk, depth vector
dk, or both resistivity and depth vectors rk and dk
at random using MMH or MSS sampling meth-
ods. In the following, we outline the MMH
algorithm for sampling depths; the algorithms
for sampling resistivity and for simultaneously
sampling resistivity and depth are similar. The
MSS algorithms for sampling resistivity, depths,
or both resistivity and depths are similar to those
given by Chen et al. (2007).

Step 1 At the ith iteration, randomly select
an interface for updating (say the kth
interface).

Step 2 Draw a candidate sample d'k from a mul-
tivariate Gaussian distribution truncated by
the conditional bounds ðlk; ukÞ with mean at
the current value dðiÞk and covariance matrixP

p (see Appendix B); thus d'k ∈ ðlk; ukÞ.
Step 3 Check φðd'kÞ for a given cutoff angle α0

(e.g., 20°). If φðd'kÞ ≥ α0, go to step 4; go to
Step 2, otherwise.

Step 4 Calculate the accepting ratio β by

β ¼ min

"
1;

fðzjr; dðiÞ2 ; dðiÞ3 ; · · · ; d'k; · · · ; d
ðiÞ
m Þ

fðzjr; dðiÞ2 ; dðiÞ3 ; · · · ; dðiÞk ; · · · ; dðiÞm Þ

×
fðd'kÞ
fðdðiÞk Þ

#
:

Draw a sample u from the uniform distribution
on (0, 1). If u < β, let dðiþ1Þ

k ¼ d'k; otherwise,
let dðiþ1Þ

k ¼ dðiÞk .
The above algorithm is a way to draw samples

from the conditional distribution given in
equation 13. Specifically, step 2 enforces the
condition ind½dk ∈ ðlk; ukÞ% ¼ 1 whereas step 3
enforces the condition ind½φðdkÞ ≥ α0% ¼ 1.
Step 4 is the standard Metropolis-Hastings pro-
cedure to draw samples from the posterior distri-
bution that is proportional to the product of the
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Figure 5. Comparison between the synthetic observed (solid lines) and calculated
(dashed lines with circles) TM-mode phases using the model formed from the estimated
medians of individual parameters. The vertical segments show the 95% error bars around
data.
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likelihood function fðzjr; dÞ and the prior fðdkÞ. After many runs of
the algorithm, the resulting depth vectors are approximately sam-
ples from the conditional distribution in equation 13 (Tienery,
1994). The detailed sampling procedures are given in Appendix C.

SYNTHETIC EXAMPLE

Synthetic true model

We first apply the Bayesian model to a synthetic case that mimics
typical geothermal field conditions. Figure 2 shows the true 2D
resistivity cross-section with five (i.e., the overburden, clay cap, re-
servoir, transition, and bedrock) layers, which spans 20 km laterally
(i.e., from x ¼ −10 km to x ¼ 10 km). We use a geostatistical mod-
el based on the exponential variogram to generate depths to each
interface and resistivity values in the overburden, clay cap, and tran-
sition layers. The geostatistical parameters for generating the 2D
cross section are given in Table 1. For the reservoir layer, we let
resistivity linearly increase from 20 ohm-m at the left (i.e.,

x ¼ −10 km) and right (i.e., x ¼ 10 km) edges to 460 ohm-m near
the center (i.e., x ¼ −1 , 0, and 1 km). The bedrock resistivity is
assumed to be constant and equal to 30 ohm-m.
We define 21 nodes for each interface, starting from x ¼ −10 km

and increasing with a fixed increment of 1 km. To minimize bound-
ary effects, we choose a very large domain for forward simulations,
which is from −350 to 350 km along both the x- and z-axes.

Synthetic MT data and prior information

We generated noisy synthetic data using the adaptive finite-
element numerical forward model at 15 sites shown as small trian-
gles in Figure 2, which correspond to x ¼ −9, −7, −5, −4, −3, −2,
−1, 0, 1, 2, 3, 4, 5, 7, and 9 km. We use 12 frequencies that are
equally spaced in the logarithmic scale between 0.001 and
100 Hz. We first calculated the true complex impedances for the
given true 2D resistivity structure, then added zero-mean Gaussian
random noise whose standard deviation is equal to 5% of their
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corresponding amplitudes, and finally converted the noisy complex
impedances to apparent resistivity and phases.
We choose prior bounds for all unknown parameters as part of

model definition based on our experience for typical geothermal
fields. The prior lower and upper bounds of depths are the values
that are 30% smaller and 20% larger than their corresponding true
values. Such asymmetrical specifications can reduce the chance of
starting from the true model parameters if we randomly pick the
initial values using a Gaussian distribution. The prior lower and
upper bounds of resistivity for the overburden, clay cap, reservoir,
transition, and bedrock layers are (1, 300), (0.1, 10), (10, 800), (10,
200), and (10, 100) ohm-m, respectively. We use the first-order
pairwise-difference priors (see equation 4) for the synthetic study
because we do not have good information on the means of resistiv-
ity and depths. The standard deviations of resistivity and depths for

each layer are assumed to be 20% of their corresponding means
over all the nodes on the layer; the spatial correlation lengths are
set to be the true values.

Inversion of 2D synthetic MT data

We use MCMC methods to draw many samples from the joint
posterior distribution given by equation 7. We start from the med-
ians of the prior bounds of resistivity and from the 25% quantiles of
the prior bounds of depths. We run three chains using the same in-
itial values but different random seeds for 80,000 iterations and only
keep samples at every two iterations (i.e., a thinning of two) to save
disk space. The use of different random seeds makes those chains
move in different paths, which is equivalent to starting from differ-
ent initial values.

We monitor the convergence of the chains
using the rms of error-weighted differences be-
tween the data and the simulated results. To
quantify the discrepancy among the three chains,
we use the potential scale reduction factor
(PSRF) defined by Gelman and Rubin (1992),
which is a measure of the between-chain varia-
bility relative to the within-chain variability. If
the scale reduction score is less than 1.2, the Mar-
kov chains are considered converged; otherwise,
more runs are needed.
Figure 3 shows the rms of the differences be-

tween the synthetic data and the simulated results
for the three chains as a function of iterations
after thinning. Although we start from the same
initial values, the rms of the three chains is very
different in the early stage of simulations because
they explore the joint posterior distribution in dif-
ferent paths. After about 20,000 iterations, the
three chains visually are approaching the same
distribution; they give the PSRF value of 1.13.
Because the PSRF value is less than the threshold
value of 1.2, we consider the three chains con-
verged and use all those samples in the later part
of the chains to estimate the medians and 95%
predictive intervals of unknown parameters.
We choose to monitor the rms between the

data and the simulated results to provide a bal-
ance between the reliability of inversion results
and the cost for running long chains. The use
of methods for monitoring PSRF of individual
parameters (e.g., Gelman and Rubin, 1992) or
for monitoring multivariate PSRF of all para-
meters (e.g., Brooks and Gelman, 1998) calls
for very long chains, which is not feasible for this
study. The convergence diagnostics of MCMC
chains are very difficult, especially for high
dimensional problems; they are active research
areas that need breakthroughs both in theory
and in practice (Cowles and Carlin, 1996).

Inversion results and uncertainty

Unlike deterministic inversion methods, which
typically provide a single optimal solution under

Table 2. Comparison between the true and estimated medians and uncertainty
information.

Parameters

The rms of the relative
differences between the

true and estimated
values

Relative widths of the
predictive intervals

Mean Maximum Mean Maximum

Depth Layer 1 0.0325 0.1037 0.1183 0.2438
Layer 2 0.0478 0.0996 0.0872 0.1874
Layer 3 0.1179 0.2224 0.1546 0.2129
Layer 4 0.1241 0.2130 0.1489 0.2413

Resistivity Layer 1 0.1165 0.3415 0.1856 0.4489
Layer 2 0.2479 0.6574 0.3314 0.7711
Layer 3 1.0711 3.3905 0.6829 1.3792
Layer 4 0.4327 0.7915 0.4535 1.3592

PP UNIT I PP UNIT II & III

• Volcanic environment

• Vapor dominated reservoir

• 37+ wells

• 271 MW installed capacity 
(Units I, II, III)

Figure 8. The location and main features of the Darajart geothermal site in Indonesia.
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some criteria, the stochastic approach provides 60,000 solutions
(20,000 from each chain) that fit the data (see Figure 3). With those
results, we can obtain detailed information on each unknown
parameter, such as its mean, median, mode, standard deviation,
and 95% predictive interval. We can use the means, medians, or
modes of individual parameters to form a single solution.
Figures 4 and 5 compare the TM-mode apparent resistivity and

phase data (solid lines) with those calculated from the estimated
medians of individual parameters (dashed lines with circles) at
the 15 receivers; the 95% error bars around data are shown as ver-
tical line segments. The solution formed from the medians of indi-
vidual parameters fits the synthetic data quite well, with the rms of
1.0337 for the TM-mode data and the rms of 1.0425 for the TE-
mode data. Although the solution formed by the estimated indivi-
dual medians may not be necessarily optimal, it often has good data
misfits as shown in this study. In applications where a single optimal
solution is needed, we can run a deterministic inversion algorithm
by starting from the initial model formed from the estimated med-
ians as suggested by Chen et al. (2008).
We compare the inversion results with the true resistivity and

depths to demonstrate the effectiveness of the developed method
for parameter estimation. Figures 6 and 7 show the true values (solid
lines with triangles), the estimated medians (solid lines), the 95%
lower and upper bounds (dashed lines), and the prior bounds (dotted
lines), over the range covered by the 15 receivers (i.e., from
x ¼ −9 km to x ¼ 9 km). Table 2 is a quantitative summary of
the comparison, in which the 3rd and 4th columns show the rms
and maximum of the differences between the estimated medians
and true values, and the 5th and 6th columns show the averaged
and maximal relative width of 95% predictive intervals.
We can see the accuracy of the parameter estimation varies from

one layer to another. For the first (i.e., overburden) and the second
(i.e., clay cap) layers, we have very good estimates of the true
values with small uncertainty. For those layers, the estimated results
are not sensitive to the prior bounds and other prior information,
such as the standard deviations (σrk, and σdk) and spatial correlation
lengths (λrk, and λdk) in the pairwise-difference priors. This
is because the estimation results are primarily determined by the
MT data.
For the third (i.e., reservoir) and the fourth (i.e., transition) layers,

both the resistivity and depths get updated by conditioning to the
MT data as their posterior uncertainty bounds (dashed lines) are
narrower than the corresponding prior bounds (dotted lines); their
estimated medians roughly follow the trends of the true values.
However, the estimated results are less accurate and subject to a
large degree of uncertainty. Such results are consistent with those
found by Kumar et al. (2010). In their studies, they inverted a 3D
MT data set using the least-square estimation method by starting
from a half-space model, from a model formed using 1D stochastic
inversion results, and from a model formed using 2D least-square
estimation results. The differences in the estimates of the overbur-
den and clay cap are small but in the estimates of the reservoir and
deep layers are significant.
The increasing uncertainty with depth is likely caused by a com-

bination of the decay of the electromagnetic fields as a function of
skin depth and the cumulative effects of parameter uncertainty as
energy propagates farther in the model. The uncertainty of a param-
eter at a given depth is a function of uncertainty of all the parameters
above the depth because the energy must pass through the media

before interacting with the parameter (either resistivity or thickness
of a resistor).
The prior information on the parameters in the reservoir and tran-

sition layers is important for the estimation, especially the lower and
upper bounds because MT data provide limited information on
them. Informative priors from other sources of information, such
as seismic, gravity, or electromagnetic surveys, may significantly
improve the inversion results. For the bedrock layer, the estimated
median provides a very accurate estimate of the true value (i.e.,
30 ohm-m), with the estimated median of 29.77 ohm-m and the
95% predictive interval of (28.87, 30.74) ohm-m. This is because
in the current model, we assume the bedrock resistivity is constant
and it can get information from all the receivers.

FIELD EXAMPLE

Darajat geothermal site

The Darajat geothermal field is located about 150 km southeast
of Jakarta and 35 km southeast of Bandung, the capital of West
Java, Indonesia. The field is situated along the eastern side of a
range of volcanic centers nearly 30 km in length, and lies about
9 km southwest of the producing Kamojang geothermal field
and 10 km east of Wayang Windu geothermal field (see Figure 8).
Darajat is a vapor dominated geothermal reservoir that currently
supplies steam to generate 271 MW from three power plant units
(Rejeki et al, 2010).
Resistivity methods dominate the geophysical tools applied dur-

ing exploration for geothermal reservoirs because low resistivity is
closely correlated with the low resistivity smectite clay that caps
most geothermal systems (Cumming, 2009). Over the Darajat
Geothermal Field, 90 MT stations have been deployed (Figure 9).
The MT data collected over Darajat have provided important con-
straints on the interpretation of the areal extent and location of the
Darajat field during the exploration and development of the field.
These data when integrated with the surface geologic, geochemis-
try, and the subsurface drilling data, have provided important
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constraints on the location and geometry of the clay cap and reser-
voir for the Darajat Geothermal system (Rejeki et al, 2010).
Such dense geophysical data allow us to estimate the under-

ground image using 1D, 2D, or 3D inversion methods. For this
study, we have selected MT data at the sites on or near the profile
starting from DJ-431 and ending at DJ-116, as shown in Figure 9.
This east–west profile includes 12 sites and is approximately per-
pendicular to the observed geoelectric strike direction. At each site,
we have apparent resistivity and phases with frequencies from 0.01
to 100 Hz for both TE and TM modes. For the 2D inversion, we use
only the TM-mode data because they are more robust than the TE-
mode data to non-2D effects, such as finite strike and static shifts
(Newman et al., 2008).

Inversion of field data

We use a similar parameterization to the synthetic study and as-
sume that they have five interfaces and each has 27 inner estimation
nodes. We use the same prior bounds as the synthetic study for re-
sistivity. We use an initial model that was constructed from the 3D
deterministic inversion results along the same profile.
Figure 10 shows the resultant 2D cross section based on esti-

mated medians of resistivity. From the cross section, we can see
the clearly defined resistivity layers. The estimated shapes and geo-

metries of the layers have a good correspondence
with other types of information collected at this
site. For example, the locations and thickness of
the low resistivity layer has a very good corre-
spondence with the system clay cap and the lo-
cation of the Darajat geothermal reservoir. The
doming up of the high resistivity layer corre-
sponds with high gravity that correlates with
the intrusive rocks found beneath the field. Even
for the deepest (i.e., fifth) layer, where the resis-
tivity decreases again, the interface between the
fourth and fifth layers corresponds well with the
maximum depth of seismicity (or earthquakes) at
the site (Rejeki et al, 2010).
Figures 11 and 12 show the data misfits for the

inversion based on the estimated medians, with a
mean rms of 1.88 and a standard deviation of
0.09. As we can see, most of the calculated
MT responses from the estimated medians are
within the 95% error bounds.

Comparison with 3D deterministic
inversion

We visually compare the results with those ob-
tained from a 3D deterministic inversion. The 3D
inversion uses the Gauss-Newton method devel-
oped by Newman et al. (2008) to fit the MT data
collected from 85 stations and with frequencies
ranging from 0.01 to 100 Hz. The inversion
starts from a half-space with the resistivity of
10 ohm-m; the off-diagonal elements of the
impedance tensor were fit to the rms of 1.4.
The 3D inversion method is very different from
the stochastic inversion in terms of (1) parameter-
ization (i.e., grid-based versus sharp boundary

0.01 0.1 1.0  10 100

20

40

60

80

100
Site DJ−431

A
pp

. r
es

 (
oh

m
-m

)

0.01 0.1 1.0  10 100

50

100

150

Site DJ−111

0.01 0.1 1.0  10 100

20

40

60

80

100

Site DJ−415

0.01 0.1 1.0  10 100

20

40

60

80

100
Site DJ−112

A
pp

. r
es

 (
oh

m
-m

)

0.01 0.1 1.0  10 100

2
4
6
8

10
12

Site DJ−41 

0.01 0.1 1.0  10 100

20

40

60

Site DJ−113

0.01 0.1 1.0  10 100

50

100

150

200

Site DJ−114

A
pp

. r
es

 (
oh

m
-m

)

0.01 0.1 1.0  10 100

10

20

30

40

Site DJ−416

0.01 0.1 1.0  10 100

100

200

300
Site DJ−115

0.01 0.1 1.0  10 100

100

200

300

400

Site DJ−128

A
pp

. r
es

 (
oh

m
-m

)

Frequency (Hz)
0.01 0.1 1.0  10 100

50

100

150

200
Site DJ−110

Frequency (Hz)
0.01 0.1 1.0  10 100

2

4

6

8

Site DJ−116

Frequency (Hz)

Figure 11. Comparison between the observed (solid lines) and calculated (dashed lines
with circles) TM-mode apparent resistivity using the model formed from the estimated
medians of individual parameters. The vertical segments show the 95% error bars around
data.

Figure 10. The 2D resistivity structure based on the estimated med-
ians of parameters from the field TM-mode data. The small triangles
show the locations of the MT receivers used for inversion.
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parameterizations), (2) data used (i.e., TE and
TM mode data at all the sites versus TM mode
data at only 12 sites), (3) methods for finding
solution (i.e., Gauss-Newton versus MCMC
sampling based methods), and (4) smoothing
(i.e., regularization versus prior models). How-
ever, as shown in Figure 13, where we superim-
pose the stochastically estimated interfaces on
the 3D smoothing results, we can see that overall
they are very similar. Specifically, we can see the
laterally variable overburden, the persistent clay
cap, the doming up transition and reservoir, and
the deepest interface.

Quantification of uncertainty

One of the main advantages of stochastic inver-
sionmethods is that they provide extensive uncer-
tainty information on the estimated parameters.
Figures 14 and 15 show the estimated medians
and 95% bounds of depths and resistivity, respec-
tively. Because of large differences among those
quantities, the bounds for smaller values are
hardly visible. However,we can see the trends that
uncertainty in the estimates increases with in-
creasing of depths, and uncertainty also increases
toward both ends, where data coverage is reduced.
Besides providing extensive uncertainty

information on the parameters that we directly
estimate, stochastic inversion also provides
exhaustive information on other quantities of
interest which are functions of the estimated
parameters. For example, we may want to know
the slopes, which are defined as angles relative to
the horizontal direction and different from those
defined for angle controls within the mesh, from one interface to
another at a specific location. We can obtain the PDFs of the quan-
tities by first calculating them for each MCMC sample and then
applying a density estimation method to the resultant values (Gilks
et al., 1996). Figure 16a and 16b shows the estimated PDFs of the
slopes at x ¼ 800 km and of the radii at the tipping point accord-
ingly using the density estimation method given by Venables and
Ripley (2002). As shown in Figure 16a, even if there are consider-
able uncertainty on those values, we can see that from interface 1
(solid curve) to interface 2 (dashed curve), the slope increases
significantly. For geothermal applications, we may want to know
the curvature or radius of the doming up part. As shown in
Figure 16b, the radius at the tipping point decreases, starting from
the ground surface. This means the doming of the tipping point
increases with depth. This is a typical feature of geothermal reser-
voirs. In fact, we can make inferences on many other quantities of
interest.

DISCUSSION

The developed stochastic method has several different features
from the Gauss-Newton based iterative approaches by Smith
et al. (1999) and de Groot-Hedlin and Constable (2004). The choice
of initial models plays different roles in the two types of determi-
nistic methods. For the deterministic inversion methods, the optimal
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Figure 12. Comparison between the observed (solid lines) and calculated (dashed lines
with circles) TM-mode phases using the model formed from the estimated medians of
individual parameters. The vertical segments show the 95% error bars around data.
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solution depends on the initial models; some in-
itial models may lead to local optimal solutions.
For the MCMC-based inversion method devel-
oped in this study, the choice of initial models
only affects the speed of convergence to the un-
derlying stationary distribution but not the inver-
sion results. In fact, to detect false convergence,
we suggest running at least three chains by start-
ing from different initial values or from the same
initial values using different random seeds, and
running more chains if computing resources
allow to do so.
Both stochastic and deterministic approaches

provide uncertainty information on unknown
model parameters, but they are different. Deter-
ministic methods first calculate the covariance
matrix of unknown parameters using the Jaco-
bian derived at the optimal solution and then
use the square root of the diagonal element as
the measure of uncertainty on the parameters
(Auken and Christiansen, 2004). This is a good
approximation if the inverse problems are mildly
nonlinear and the optimal solution found indeed
is global. However, as pointed out by Tarantola
(2005), for complex inverse problems, the above
simple method of analyzing uncertainty does not
make sense. The direct examination of the prior
and posterior probability distribution is the only
mean that we may have. The MCMC-based sto-
chastic method estimates uncertainty by deriving
marginal posterior probability density frommany
samples; this method is valid regardless of com-
plexity of inverse problems. As demonstrated by
Chen et al. (2008) and Trainor-Guitton and
Hoversten (2012), the uncertainty derived from
the covariance based methods are typically un-
derestimate the true uncertainty.
The main limitation of stochastic inversion

methods is the heavy demand for computing
resources. The MCMC-based inversion method
typically needs to run forward simulations tens
of thousands times. For example, for the syn-
thetic study, it takes about 140 hours to run
80,000 iterations using 11 processors with the
speed of 3 GHz on a single modern desktop com-
puter. This can be sped up by developing more
efficient sampling methods to reduce the total
number of iterations or using more processors
to reduce the time for forward modeling. For ex-
ample, to run 80,000 iterations for the synthetic
study, it takes about 89 hours if using 21 proces-
sors and 70 hours if using 61 processors. How-
ever, compared with deterministic inversion
methods, stochastic approaches still need signif-
icant more computing resources. For projects
with limited resources, stochastic methods may
not be the ones to use.
Another limitation of the stochastic method is

that it does not provide a single solution that is
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medians and 95% bounds, respectively.
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Figure 15. Estimated resistivity in each layer and their associated uncertainty. The solid
lines with triangles and the dashed lines are the estimated medians and 95% bounds,
respectively.

E276 Chen et al.



often needed in practice as deterministic methods. The solution
formed from the median, mean, or mode of each individual
parameter may not necessarily be the optimal solution. Therefore,
we should use stochastic and deterministic inversion methods to-
gether, as suggested by Chen et al. (2008). For example, we can
start from a range of different initial values using stochastic methods
to obtain the medians, means, modes, and predictive intervals of
unknown parameters and then run deterministic inversion methods
by starting from the initial model formed from the medians, means,
or modes obtained from the stochastic methods. We can also use
deterministic approaches first to find the optimal solution and then
use stochastic methods to verify whether the optimal solution found
is global or not. If it is global, stochastic methods can be used to
obtain uncertainty information. Otherwise, the stochastic inversion
results may provide useful information for improving the determi-
nistic inversion.
The sharp boundary parameterization makes stochastic inversion

of 2D MT data tractable; it is also useful for applications where
geologic units have sharp discontinuities (Smith et al., 1999) or re-
sistivity structures present sharp contrasts along the vertical direc-
tion (Auken and Christiansen, 2004). However, it is limited for
applications with large discontinuities along the lateral direction,
such as interfaces with a large dip (e.g., faults) or even terminating
layers. In addition, the results of inversions may be affected by the
preset total number of layers and the total number and spacing of
inner nodes in each layer.

CONCLUSIONS

We developed a stochastic approach for inverting 2D MT data
using a sharp boundary parameterization and applied it to both syn-
thetic and field MT data sets. The synthetic case study shows that
the developed model is effective in recovering the true interface lo-
cations and resistivity for first two layers and provides many sam-
ples of all unknown parameters. The obtained samples allow us to
evaluate the means, variances, modes, predictive intervals, and mar-
ginal probability distributions of unknown parameters, all of which
are useful for quantifying the uncertainty associated with inversion.
Results of the field case study show that the developed Bayesian
model is effective for estimating depths to interfaces and resistivity
under the field conditions. Comparison with the results obtained
from other sources of information shows that the stochastic inver-
sion results are consistent. The stochastic inversion provides not
only estimates of unknown parameters but also extensive informa-
tion on the uncertainty. These allow for estimation of other types of
parameters that are functions of the estimated unknown parameters.
Deterministic and stochastic approaches have their own advan-

tages and disadvantages and can be used together for practical pro-
blems as deterministic methods can converge fast so that it can
significantly shorten the burn-in period. Deterministic methods pro-
vide a single optimal solution under various constraints, whereas
stochastic methods provide exhaustive information on uncertainty.
The combined use of deterministic and stochastic methods can take
advantage of both methods and thus provide more reliable informa-
tion on unknown parameters than either approach alone.
We demonstrated the use of stochastic inversion methods for

geophysical inverse problems beyond 1D using a sharp boundary
parameterization. Because we have a fast forward model to simulate
2D EM fields, we can certainly develop stochastic methods for in-
verting 2D MT data using the grid-based parameterization as com-
monly used by deterministic inversion methods. However, because
the total number of unknowns often causes slow convergence in
MCMC sampling, we can use suitable prior models by incorporat-
ing other types of information to reduce the effective total number
of unknowns as done by deterministic methods to use regularization
or smoothing. Stochastic inversion of 3D MT data currently is
still challenging and faces several challenges: (1) availability of fast
forward modeling algorithms and codes; (2) suitable parameteriza-
tions. Reduced domain or approximation response surface methods
may work. This is a direction for future research.
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APPENDIX A

PRIOR PROBABILITY DISTRIBUTION OF DEPTH

We follow the same way as resistivity to define fðdkÞ using either
the first-order pairwise-difference prior or multivariate Gaussian
models. The pairwise-difference prior is given by
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x ¼ 800 km and (b) radii at the tipping point.

Stochastic inversion of 2D MT data E277



fðdkÞ ∝ exp

$
−
X

i∼j
wd
kði; jÞ

jdki − dkjj
σdk

%
; (A-1)

where σdk is the standard deviation of depths to interface k and
wd
kði; jÞ is the weight that depends on the lateral distance between

the ith and jth nodes. We assign the weight to the spatial correlation
coefficient ρdkði; jÞ between the ith and jth nodes, which are calcu-
lated using the exponential variogram as follows:

ρdkði; jÞ ¼ exp

$
−
jxki − xkjj

λdk

%
; (A-2)

where xki and xkj are the lateral coordinates of the ith and jth nodes
and λdk is the corresponding spatial correlation length.
We can use a multivariate Gaussian distribution as the prior with

the mean vector μd
k, either given from a reference model or obtained

from their corresponding lower and upper bounds. We use the ex-
ponential variogram model to calculate the covariance matrix

Pd
k ,

which is the same as the one used for calculating the spatial corre-
lation coefficient. The ith row and jth column component

Pd
kði; jÞ

of the matrix is given by ðσdkÞ2ρdkði; jÞ.

APPENDIX B

COVARIANCE MATRIX OF PROPOSAL
DISTRIBUTIONS

We determine the ith row and jth column of the covariance ma-
trix Σp by combining the spatial correlation coefficient ρpði; jÞ with
a small nugget for numerical stability and the standard deviations of
depths at the ith and jth nodes δdkðiÞ and δðdÞk ðjÞ. We define

ρpði; jÞ ¼
"

1.0 if i ¼ j
0.8 ' expð−jxki − xkjj∕λdkÞ Otherwise

;

(B-1)

and

"
δdkðiÞ ¼ ðukðiÞ − lkðiÞÞ∕nd
δdkðjÞ ¼ ðukðjÞ − lkðjÞÞ∕nd

; (B-2)

where nd is a tuning parameter. The covariance matrix Σp is given
by Σpði; jÞ ¼ ρpði; jÞδdkðiÞδdkðjÞ.

APPENDIX C

MCMC SAMPLING PROCEDURES

The main procedures are summarized as follows:

1) Assign initial values to all the unknowns and referred them to as
rð0Þ0 , rð0Þk (k ¼ 1; 2; · · · ; m − 1), and dð0Þk (k ¼ 2; 3; · · · ; m).
Set t ¼ 1.

2) Select an interface uniformly and select one of three cases
(i.e., resistivity, depth, or both resistivity and depth) and one
of two sampling methods (i.e., MMH or MSS) with a preset
probability for updating. Refer those samples to as rðtÞk
(k ¼ 1; 2; · · · ; m − 1), and dðtÞk (k ¼ 2; 3; · · · ; m). We keep
the same values for those untouched variables.

3) Update bedrock resistivity r0 using single variable Metropolis-
Hastings or slice sampling methods and refer the drawn sample
to as rðtÞ0 .

4) If the preset total number of iterations has been reached, stop;
otherwise, let t ¼ tþ 1 and go to Step 2.

For implementation, we always evaluate the logarithmic likelihood
to avoid possible numerical over- or under-flow.
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