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PREFACE

In my former professional life in the oil and gas exploration industry, a very

astute observation was drilled into me by my unit manager. ‘All geophysics is decision

support,’ they said. Over the years, as I timorously dared squeak out the results of my

subsurface geophysical investigations to DRBs (Decision Review Boards, another TLA or

Three Letter Acronym), I realized that an enormous amount of geological, geophysical,

economic, political and safety considerations went into making a hydrocarbon exploration

investment decision.

I had to justify my results, as did a bevy of other geoscientists, in front of a

panel of experts whose job it was to find out what errors we may have made both in

our individual analyses, and in how we had linked them together. Each scenario the

exploration teams came up with, was scrutinized at an exhaustively detailed level. At

first, I quailed at the prospect of having to present a panel of experts with inferences

about parts of the near subsurface (down to ⇠10 km depth and ⇠100 km laterally),

derived from observations of data collected on the surface. I then came to the realization

that the more experienced hands showed more aplomb not because their work was better,

but because they had embraced the idea that their results were uncertain. Of course, as

the reader will no doubt imagine, this made me feel a lot better, but not perhaps because

of what one may at first be inclined to think. As we will rigorously expound upon in the

next few chapters, uncertainty is an inescapable aspect of our lives. The geoscientists

in my organization did not do shoddy and uncertain work. It was just that they were

well aware that their notions of the buried sediments, were merely interpretations. They

knew qualitatively, that there were other possible hypotheses for sediment accumulation,

charge formation (the natural chemical process of oil and gas formation), hydrocarbon

source migration (movement of hydrocarbons as restricted by geological layering), and

structural trap and seal formation (which ensures that the hydrocarbons are ensconced

in a space we can drill) – than the ones they had drawn up.

Typically, geophysicists are involved in two stages of this process. First, at a very

large spatial scale (> 100 km laterally), using topographic, gravity and magnetic data in

helping outline the area and depths of interest. This directly influences the hypotheses

of sediment accumulation and charge formation. Second, they are also involved at the

xvii



more detailed kilometer scales (both in depth and area), for the imaging of structures

(using seismic data) and analyses of signatures which indicate hydrocarbon presence

(using controlled source electromagnetic or CSEM data, for instance).

However, until a well is safely drilled after negotiating the high pressures found in

deep rock formations, one cannot be sure that we have indeed struck oil. This is because

only a successful ‘down-hole’ signature from the well using sophisticated instruments and

the return of hydrocarbons in the drilling fluid indicate hydrocarbon discovery. Then of

course, there is the issue of the volumes discovered and their economic profitability. A

rule of thumb, averaging worldwide, is that only one-in-three wells are successful, and it

is getting harder and harder to find oil and gas in easy to access locations.

This one-in-three statistic fully reflects the uncertain nature of the oil and gas ex-

ploration industry. Our observations of the data reflecting the presence of oil and gas are

indirect, incomplete, and noisy. From these independent data, we must multiplicatively

infer what is known as a POS or a probability of success for the prospect. Then there

are other probabilistic measures of the oil and gas reserves in the given field and what

that ultimately translates to, also probabilistically, in terms of estimated demand, pro-

duction costs, and ultimately, cost recovery over timelines that are a significant portion

of a human lifetime. The monetary figures involved easily go into billions of dollars.

At present, the idea of the uncertainties involved in exploration and reservoir

management are mostly qualitative, and inferred relative to experience with previous

exploration and production campaigns. While this experience of ‘for the previous oil-

field, statement X held true, therefore for this one ....’ generally works, the process of

uncertainty appraisal is in dire need of quantification (pers. comm. with G. Michael

Hoversten). Integration of all the involved data, geological, geophysical, political, eco-

nomic and of all other sorts, in a waterproof quantitative framework which accounts for

all uncertainty – is probably impossible. However, we can characterize the risks and

costs involved in oil drilling. For example, we can try and reliably provide the chance of

encountering hazardous shallow gas or the presence of economically viable hydrocarbons,

by analyzing the available geophysical data in a rigorous probabilistic framework. This

is possible as it involves rigorous physics, statistics, and some well established laws of

chance. Once we have characterized the uncertainty, we are then in a position to try and
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address it in our operations.

ORGANIZATION OF THE DISSERTATION

In this dissertation, we will attempt to demonstrate uncertainty quantification

in subsurface geophysical analysis. We will do so by focusing on using geophysical data

derived from CSEM surveys within a Bayesian probabilistic context. A CSEM survey and

the subsequent ‘inversion’ of CSEM data allows us to infer subsurface resistivity in the

survey area. Since oil and gas reservoirs are highly resistive relative to their surrounding

sediments, CSEM is an exploration tool that is a good indicator of hydrocarbon presence.

In this vein, the dissertation is organized as follows:

Chapter 1 provides a brief introduction to Bayesian inversion and the physics of

marine CSEM. Chapter 2 develops the mathematical machinery for a trans-dimensional

algorithm, which spans multiple hypothesis spaces. The algorithm is applied to the

CSEM inverse problem for anisotropic subsurface resistivity. A 1D implementation with

real data examples from the Pluto gas field is presented. Chapter 3 implements an

algorithm using ‘replica exchange’ or ‘parallel tempering’ to speed up convergence to the

desired resistivity uncertainty in CSEM inversion. In Chapter 4, the trans-dimensional

method is implemented using a 2D parameterization with Voronoi cells. It is then applied

to real CSEM data from the Scarborough gas field. Chapter 5 is a brief essay with

concluding remarks.
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This dissertation is an attempt to apply the powerful tool of Bayesian inference

to the elegant physics of controlled source electromagnetic (CSEM) propagation through

marine sediments with high resistivity contrasts. CSEM is highly e↵ective in the detec-

tion of resistive hydrocarbon accumulations in conductive sediments, but its use requires

careful analysis owing to the problems of sparsely sampled data, noisy observations and

non-uniqueness. Bayesian inference allows us to tackle these limitations in a quantita-

tive, probabilistic framework by using prior information about the geology in question

and the statistics of the data noise. We extend conventional Bayesian analyses to a

second level, where we infer the complexity of subsurface resistivity models required to

explain the observed noisy CSEM data, from the observations themselves. Although we
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have focused on the CSEM method, the techniques discussed are generally applicable to

many problems in the geosciences.
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Chapter 1

Introduction

1.1 Why use Bayesian inference in geophysics?

If we examine Figure 1.1, we can see a progression from left to right. The first

image shows an artist’s caricature of a person, sketched within ten minutes. Impressive

as it may be, the next image shows the caricature, now barely recognizable and pixelated.

Only every eighth row and column of the original image has been preserved and noise has

been added to it. The next three images show fairly similar attempts at reconstructing

the original caricature. The last image to the right, now shows the mean of many

reconstructions, and restores a smidgeon of dignity to the artist’s work and her subject’s

visage. Omitting the details for now, the mean reconstructed image was formed by

sampling many images like the three shown to its left, and then summing them up. The

sampling process used a Bayesian philosophy, which only required a priori knowledge of

Figure 1.1: From left to right: A caricature drawn by an artist, the same image
decimated and now with noise added to it, three reconstructions that fit the noisy image
and finally, the mean of many reconstructed images.

1
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Figure 1.2: The standard deviation of reconstructed images which fit the decimated
noisy image. The darker parts of the original image have less variance.

the kind of noise corrupting the image, and some information regarding the geometric

extents of the true image and the range of its brightness values.

In the field of geophysics, an integral part of our analysis of the earth’s structure

first begins with the collection of data using instruments of some kind such as magne-

tometers, seismometers or gravimeters, to name just a few. The data are always noisy

and sampled in a spatially discontinuous manner, just like in the caricature. The reason

behind the imperfect sampling is simple – we humans are tiny, the earth is large and

we can’t possibly land our instruments in every nook and cranny of the earth’s surface.

There is also the issue of the significant monetary cost involved in acquiring data in a

denser fashion.

The reasons behind the presence of noise in the observations are more subtle, and

indeed more philosophical. What constitutes ‘noise’ and ‘signal’ essentially lie in the eye

of the geophysical beholder. For many purposes, including ours in this dissertation – it is

adequate to treat as noise, fluctuations in the observed geophysical signal that are not of

our interest. Further, since we cannot possibly model these fluctuations at all locations

and at all possible times, we treat them in a statistical fashion as being random. Once

we are satisfied that we have an adequate statistical representation of the noise, and

possess some deterministic physical mechanism that allows us to emulate the observed

signal, we are in business and able to begin geophysical analysis. The di↵erence between

the emulated signal and the observed signal allows us to quantify a residual quantity –
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which we interpret as noise. Given our knowledge of the noise statistics, we know how

likely a given residual should be.

Bayes’ theorem (Bayes and Price, 1763) is essentially a mathematical formulation

that lets us translate the observed noise into an ensemble of models compatible with the

data, just like the three similar images in columns 3, 4 and 5 of Figure 1.1. If we have a

su�ciently large ensemble of models, most of which fit the data within the observed noise

– we can then find statistical properties of the ensemble such as the mean (Figure 1.1,

extreme right) or standard deviation as shown in Figure 1.2.

For geophysical data, the statistical properties of the reconstructed model en-

semble - known in Bayesian parlance as the ‘posterior’ model ensemble, contain valuable

information about the earth (Tarantola and Valette, 1982; Aster et al., 2005). From such

a model ensemble, one can obtain an idea of the uncertainty with which we are able to

reconstruct physical models of the earth, given noisy geophysical observations at discrete

locations such as satellites, marine ship tracks, ground or airborne surveys, etc.

1.2 The methodology of geophysical inversion

When applied to geophysical data, the process referred to in the previous sec-

tion for illuminating earth structure is known as geophysical inversion. Although the

methodology outlined so far has been probabilistic and Bayesian, it does not need to be.

At the risk of invoking recursive logic at this point, we can state that solving an inverse

problem requires solving a forward problem and an inverse problem. The forward prob-

lem, is of the following nature, for example – ‘given the shape and size of a lion’s vocal

chords, what will it sound like when it roars?’ A corresponding inverse problem could be,

‘given the sound of a lion’s roar, what can we say about the shape and size of its vocal

chords?’ Of course, to answer the latter question, we must have some idea of what kind

of vocal chord structure produces a certain kind of roar. We could make a very simple

approximation of a vocal chord as a tube of a given length, and use the physics of wave

propagation to map a vocal chord of given length to an ensemble of sounds at various

frequencies. This would be the solving of the forward problem. Presumably, we could

then listen to di↵erent lions roaring at a safe distance away in the African savannas, and



4

then be able to say something about the lengths of their vocal chords, given that longer

vocal cavities in larger lions would produce lower frequency roars.

In geophysics, we ask this sort sort of question all the time – given observations of

the earth’s gravity field on the surface, what can we say about the structure of the basin

buried in Cretaceous sediments? Given the seismograms providing earthquake ground

motions, what can be inferred about the source geometry?

To formally go about this process, we first need a model of the earth, m, which

we can can map to the observed data d. For any general subsurface geophysics problem,

we could discretize the earth’s subsurface into m intervals and observe the data at n

points on the earth that are easily accessible to us. We could then use a functional f

which maps these m parameters in m to the n observed points in d in the following

manner:

d = f(m). (1.1)

So it might appear that geophysical inversion is simply a case of finding m which mini-

mizes the ‘size’ of the quantity

d� f(m), (1.2)

but this is where it begins to get tricky. There are all kinds of questions hidden in the

minimization of the ‘size’ of expression (1.2). Does a model even exist? If so, what is the

most appropriate functional f? What kind of norm (measure of length) should we use

to minimize the ‘distance’ between the observed data d and the prediction f(m)? How

should we discretize the model vector m? Is the ensuing model from this minimization

sensible? These and many other questions have been answered at length in the classic

texts on geophysical inversion such as those by Parker (1994), Menke (2012), Tarantola

(2005) and Aster et al. (2005) to name just a few.

If the problem is linear, such that d = Gm where G is an n ⇥ m matrix that

linearly maps the m ⇥ 1 vector of model parameters to the n ⇥ 1 vector of noiseless,

perfect, observed data, there are ‘one shot’ methods of finding m which minimizes
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the Euclidean norm of expression (1.2). The classic Gaussian least squares solution

is m = (Gt
G)�1

G

t
d, but as is quickly found out by first year grad school geophysicists,

we can run into unrealistic looking solutions that fit the data well, but make no physical

sense. The problem may be ill conditioned, with small errors in the observations lead-

ing to models that are very dissimilar to the true model. The observations may not be

independent. Worse, if there are more unknowns than data observations then additional

information may be required to obtain a solution. One sensible idea to adopt in this case

is to find a model of ‘least length’ or the ‘minimum norm’ solution. We may also wish to

trust certain data points more than others and weight them accordingly. All these cases

have been dealt with insightfully and in detail in Menke (2012).

Many geophysical inverse problems are not well posed in the classical sense.

Solutions, if they exist may not be unique, and can vary wildly for slight perturbations

in observed data. For many geophysical problems, especially those in electromagnetics,

f(m) is not a linear transformation – consequently, acceptable solutions to the inverse

problem may not vary continuously with the observed data and parts of the model space

may be ‘forbidden’, as shown for example by Sneider and Trampert (2000) and in section

3.2.1 of this dissertation (Ray et al., 2013).

One strategy for solving a non-linear inverse problem is to use a Gauss-Newton

approach – from an initial starting model, f(m) is approximated using a Taylor series

expansion (to first order) about the starting model. An update to the model is found

by solving a linear problem, and this process is continued until the algorithm converges

upon a minimum of the surface defined by the Euclidean norm of the expression (1.2).

However, as pointed out by Parker (1983), the model with minimum misfit may not be

a very geologically sensible model. Indeed, if the observation errors are Gaussian, the

sum squared errors will be �2 distributed and the �2 distribution for more than two

independent observations is absolutely improbable at zero sum squared error. There

are various possible solutions which restrict overfitting the data, by trading o↵ the data

misfit given by a norm of the expression (1.2) with a norm of the model vector m. This

is done by simultaneously minimizing the data misfit norm and the model norm, and

choosing a weight � which adequately balances the model complexity (or size) and the

data fit. This is known as model regularization and � is known as the trade-o↵ or
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regularization parameter. For example, with the Euclidean norm, instead of minimizing

only expression (1.2), we minimize the following objective function

u = ||Wd�Wf(m)||2 + �||Rm||2, (1.3)

where R is a matrix that operates on m to provide a measure of smoothness such as

a first or second derivative, or it could simply be an identity matrix. W is a matrix

of data weights, typically the inverse covariance matrix of data errors. If � is large,

the model size is penalized heavily relative to the data misfit, and conversely a smaller

� will result in better fit data, but with perhaps unreasonably complicated models.

Model regularization involves choosing �, the operator matrix R and even a suitable

model norm, which need not be L2 or Euclidean. There are various guiding principles

in making sensible regularization choices, such as choosing the smoothest model which

fits the data within a given tolerance (e.g., Constable et al., 1987).

In a Gauss-Newton type approach, to calculate the Taylor expansion of the for-

ward function, a first derivative of f(m) with respect to m needs to be calculated. This

derivative is known as the n ⇥ m ‘Jacobian’ or ‘model sensitivity’ matrix. For large

problems with many data and model parameters this presents both a computational and

storage challenge. Conjugate gradient methods (Mackie and Madden, 1993; Rodi and

Mackie, 2001) calculate only the action of the Jacobian matrix on an arbitrary vector

and thus mitigate these computational issues. However, the method of choosing the

regularization parameter � in these methods is rather arbitrary.

Both the Gauss-Newton and conjugate gradient approaches involve following a

gradient down a surface defined by some objective function as in equation (1.3) to a point

of minimum. They rely on being close to the global minimum (the ‘true’ solution) of the

objective function instead of an isolated minimum pocket. If there are various minima

with acceptable levels of data misfit, these methods provide only one model solution.

Further, the process of performing model regularization in both of these approaches is

rather an art, and can produce sensible, but very di↵erent types of models with the same

level of data misfit. Bayesian methods as we will see in the later sections of this chapter,

though far more computationally expensive, do not require any linearization nor the

di�cult calculation of numerical derivatives. They produce results in the form of model
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Figure 1.3: CSEM radial electric field E
r

responses at the seafloor in 1 km deep sea
water at three transmission frequencies. The left pane shows a 100 m thick resistive
reservoir embedded in conducting sediments (red model). The background model with-
out a reservoir is shown in dashed black. The middle pane shows the amplitude of the
electric field and the right pane its phase. Solid lines correspond to the reservoir response
and dashed lines indicate the background response in the absence of reservoir.

ensembles that are not shy of highlighting non-uniqueness in the model space. Further,

given sensible prior boundaries derived from what is known about the subsurface, they

do not require any subjective model regularization.

1.3 Why use controlled source electromagnetic sounding

(CSEM)?

As a hydrocarbon exploration tool for subsurface imaging of geological structures

– the reflection seismic method is unparalleled. The physics of seismic wave propagation

obey the wave equation, and the accompanying high resolution is what would be expected

of wave-like phenomena. However, the seismic method is extremely sensitive to contrasts

in the product of velocity and density (acoustic impedance) between geological layers in

the subsurface. For hydrocarbons, especially gas – as a seismic wave propagates from

a saline water bearing medium to a hydrocarbon bearing medium, there is a very large
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reflection response observed at the surface that saturates with the presence of even minute

amounts of gas. On the other hand, electromagnetic energy, when di↵using through

conductive media at low frequencies, is sensitive to high resistivity contrasts without the

response being saturated. An oil-water or gas-water interface presents precisely such

a contrast, given that saline sediments and hydrocarbon bearing sediments are highly

conductive and resistive respectively. Of course, in any realistic exploration scenario,

one must combine information from many di↵erent geophysical and geological sources

before making a decision to drill a well.

Marine CSEM is a low frequency active source sounding method, the use of which

is motivated by its sensitivity to resistivity, which is more indicative of hydrocarbon

presence (as opposed to geological structure). The marine CSEM response at the seafloor

in 1 km deep sea water due to a 100 m thick reservoir at 1 km depth below the seafloor

is shown in Figure 1.3. Solid lines represent responses in the presence of a reservoir, and

dashed lines indicate CSEM response in the absence of a reservoir.

Much of the pioneering work to do with the marine CSEM method was car-

ried out at the Scripps Institution of Oceanography, the National Oceanography Centre

Southampton, and Cambridge University. A comprehensive review can be found in Con-

stable (2010). The physics of marine CSEM propagation has been analyzed in great

detail in previous work (e.g., Chave and Cox, 1982; Evans, 1991; MacGregor, 1997; Los-

eth, 2007; Key, 2009) and a recent review can be found in Key (2012). A key point of

note is that the problem is highly non-linear, and model responses cannot linearly be

related to model parameters. The basic principles of electromagnetic wave propagation

as applicable to the marine CSEM problem are discussed in the next subsection.
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1.3.1 Maxwell’s equations in a conducting medium

Maxwell’s equations in a source free, isotropic, homogenous conducting medium

for the electric field E and the magnetic field B are given as:

r⇥E = �@B

@t
, (1.4)

r ·E = 0, (1.5)

r ·B = 0, (1.6)

r⇥B = µ�E+ µ✏
@E

@t
, (1.7)

where µ is the permittivity of the medium, ✏ its permeability and � its conductivity.

For CSEM applications, it is the conductivity � or its inverse, resistivity ⇢ that we are

most interested in. Taking the curl of equation (1.4), using the identity, r ⇥r ⇥ F =

�r2

F+r(r ·F) for a vector field F, from equations (1.5) and (1.7) we obtain a general

version of the wave equation with an attendant di↵usion term proportional to the first

derivative of the field with time:

r2

E = µ�
@E

@t
+ µ✏

@2

E

@t2
, (1.8)

Defining a Fourier transform pair according to the following convention:

F(k,!) =

Z Z
F(r, t)ei(!t�k·r)dr dt, (1.9)

F(r, t) =
1

8⇡3

Z
1

2⇡

Z
F(k,!)ei(k·r�!t)dk d!, (1.10)

(1.11)

where k is the spatial wavenumber and ! the angular frequency, we apply the for-

ward transform as defined in equation (1.9) to equation (1.8). Given the properties of

the Fourier transform whereby derivatives are transformed into multiplicative quantities

(e.g., Arfken et al., 2011), we obtain the following relation:

k2 = i!µ� + ✏µ!2. (1.12)
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The first term in equation (1.12) is called the conduction term and the second term is

known as the displacement term. Note that the displacement term does not depend on

conductivity �. The wavenumber k is complex, with the real and imaginary parts given

as follows (Ward and Hohmann, 1987):

Re{k} = !

r
✏µ

2

"r
1 +

⇣ �

✏!

⌘
2

+ 1

#
1/2

, (1.13)

Im{k} = !

r
✏µ

2

"r
1 +

⇣ �

✏!

⌘
2

� 1

#
1/2

, (1.14)

We can see from the inverse transform in equation (1.10) that solutions to the general

wave equation (1.8) are superpositions of the form

E = E0e
i(k·r�!t). (1.15)

Without loss of generality, if we are to consider propagation now only in the ẑ direction,

we can admit solutions of the form

E = E0e
i(kz�!t), (1.16)

E = E0e
�Im{k}zei(Re{k}z�!t). (1.17)

Thus we can see that there is an exponential spatial decay associated with the imaginary

part of the wavenumber, and the propagation phase is controlled by the real part of the

wavenumber. For a typical 1 ohm-m marine sediment, a plot of k2 vs frequency is

provided, with the separate contributions from the conduction and displacement terms

shown in Figure 1.4. Thus we can see that until we are in the GHz range, the conduction

term is orders of magnitude larger than the displacement term. To keep the spatial decay

small yet allow propagation through marine sediments such that we are able to sense

the presence of roughly kilometer deep discontinuities in resistivity, we must limit the

frequency range of operation for marine CSEM. Frequencies from 0.1 to 10 Hz are used, as

shown by the pink bar on the frequency axis. This is still the range where !µ� >> ✏µ!2
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implying that we are in the ‘quasi-static’ regime with

�

✏!
>> 1, (1.18)

and from equations (1.13) and (1.14) we obtain the following expression for the wavenum-

ber:

Re{k} = Im{k} =

r
µ!�

2
=

1

�
, (1.19)

where � =
q

2

µ!�

is known as the ‘skin depth.’ It governs the propagation distance at

which the wave has an amplitude that is 1/e of its value at the origin. We can also define

a wavelength � from the definition of the wavenumber:

Re{k} =
2⇡

�
, (1.20)

� = 2⇡�, (1.21)

� = 2⇡

r
2

µ!�
. (1.22)

Thus we see a peculiar characteristic of di↵usion problems and why they provide such

low resolution. Before a plane wavefront has travelled a full wavelength �, its amplitude

attenuates to a value which is 1/e of its original value in a distance � = �/2⇡ (Gri�ths,

1999). This is why we cannot think of the CSEM method as being similar to the seis-

mic method – although the math is the same, the governing physics are di↵erent. In

Figure 1.5, a plot of skin depths with geologically relevant resistivities is provided.

1.4 Uncertainty in resistivity from CSEM inversion

As a consequence of its di↵usive nature, robust inferences made from a CSEM

survey are necessarily from inversion of the data, and not merely from examination

of the data itself (Weiss, 2007). Typically, regularized and linearized gradient based

inversion methods have been used to arrive at models that minimize data misfit and are

also ‘optimal’ in some user-defined sense. For instance, models can be pre-determinedly

smooth or prejudiced to be close to a reference model. By means of regularization, highly

oscillatory features in the model that are thought to be outside the resolution of CSEM
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are suppressed (e.g., Constable et al., 1987; Newman and Alumbaugh, 2000; MacGregor

and Sinha, 2000; Abubakar et al., 2008; Key, 2009; Sasaki, 2013; Mittet and Gabrielsen,

2013). Although gradient based inversion methods methods are highly e�cient and well

understood, they provide either a single smooth model as a result, or a suite of smooth

models. These models provide a limited insight into the various classes of models that are

compatible with the observed data given the noise. Furthermore, a clear understanding

of the resolvability of subsurface resistivity and non-uniqueness of the final solution does

not emerge from a linearized treatment of the non-linear CSEM problem.

To quantify the uncertainty inherent in the inversion of CSEM data, one can

utilize a Bayesian framework where information is expressed as probability density func-

tions or PDFs (Tarantola and Valette, 1982; Scales and Sneider, 1997). As alluded to in

Section 1.1, in such a framework, model parameters are treated as random variables, and

their fit to the observed data given the observed statistical noise allows one to formu-

late a model likelihood. To make the connection with deterministic inversion methods,

to first order, models with low misfit possess a higher likelihood. After incorporating

prior knowledge of the models that is independent of the data, the product of the prior

model probability and the likelihood is known as the posterior model probability. This

posterior PDF describes the full solution to the inverse problem — it represents the

probability of the model, given the observed data. Those parts of the model space that

are more frequently required by the data than other parts manifest with greater posterior

probability, and hence are more certain to be properties of the earth (Backus, 1988).

Before moving on to the specifics of determining uncertainty in CSEM inversion,

it must be understood here that uncertainty is an inescapable aspect of geophysical

inversion. Whether we are interested in drilling a multi-million dollar well based on the

hypothesis that there is an oil reservoir at a certain depth at the proposed drill location,

or putting forward a hypothesis for tremor source locations in a resistive region of the

lithosphere, we should be aware that alternative hypotheses can exist (Wheelock, 2012),

making it important to evaluate the uncertainty associated with the hypothesis model

space (MacKay, 2003).
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1.4.1 Putting CSEM inversion and Bayes’ theorem together with

Markov Chain Monte Carlo (MCMC) sampling

In the inversion of CSEM data, as for any realistic geophysical problem there

are numerous parameters to determine. A Bayesian analysis requires the sampling of a

large number of models, and consequently the forward evaluation of these models can

be computationally very demanding. An exhaustive grid search over model parameters

requires an exponentially increasing number of computations as the number of model

parameters to solve for is increased. Hence, for Bayesian inversion, owing to this ‘curse

of dimensionality’ we use Markov Chain Monte Carlo (MCMC) sampling which is es-

sentially a guided random walk through the more probable parts of the posterior model

space (e.g., Liang et al., 2011). An MCMC sampling scheme is orders of magnitude

less computationally expensive than a corresponding grid search when the number of

parameters is high.

We will demonstrate the use of MCMC in this section with a toy two parameter

1D CSEM inverse problem where the depth of the reservoir bottom and its resistivity

are considered to be unknown. As shown in Figure 1.3 the true model values are 2100

m and 100 ohm-m. Synthetic CSEM data were calculated and 4% Gaussian noise was

added to the data. Before we jump into the inversion, a few terms need to be defined.

Bayesian information is contained in probability density functions (PDFs) rep-

resented by p(·). Using Bayes’ theorem, (Bayes and Price, 1763) we write

p(m|d) = p(d|m) · p(m)

p(d)
, (1.23)

posterior =
likelihood⇥ prior assumptions

evidence
. (1.24)

For Bayesian geophysical inversion, the data vector d is a constant. All PDFs

with a model dependence are functions of the random variable m. The term p(d|m) can

then be interpreted as the model likelihood, the functional form of which depends on

the statistics of the noise distribution, and the value of which depends on the model m

being sampled and its misfit. For Gaussian noise, the model likelihood is given as:



16

p(d|m) / exp

 
� [d� f(m)]TCd

�1[d� f(m)]

2

!
. (1.25)

Here f(m) corresponds to the modeled data and C

d

is the data covariance ma-

trix and [d� f(m)]TCd
�1[d� f(m)] is the �2 misfit for the evaluated model m. Thus

knowledge of the data noise statistics allows us to transform calculated misfit into like-

lihood, which is a probability. The prior model distribution p(m) represents our state

of knowledge independent of the survey data. The evidence term p(d) corresponds to

a constant PDF normalizing factor equal to the integral over all possible models of the

numerator in equation (1.23).

For the two parameter problem we will discuss in this section, all models are as-

signed equal prior probability and treating the evidence as a constant of proportionality,

from equation (1.23) we can see that the posterior model PDF will be equal to the model

likelihood PDF.

Just so that we know the ‘answer’ i.e., the posterior PDF, before carrying out

MCMC sampling of the posterior, since there are only 2 parameters to search for, we

carried out a grid search of the �2 misfits using 200⇥200 samples. The grid search

extents were in the prior model space defined between 63 to 159 ohm-m and 2070 to

2150 m, as shown in Figure 1.6a. The truth is shown at 2100 m and 100 ohm-m with an

encircled cross. Using equation (1.25) and the fact that the likelihood in this case equals

the posterior distribution, we arrive at the posterior model PDF in Figure 1.6b. Using

MCMC sampling, taking steps in the model space as shown in Figure 1.6c we are able

to reproduce this posterior PDF as we have done in Figure 1.6d with 20,000 samples,

half the number required for an adequate grid search.

Here we have used an MCMC sampler called the Metropolis-Hastings (MH) al-

gorithm (Hastings, 1970; Metropolis et al., 1953) to sample the posterior model PDF.

This is done using an acceptance probability ↵ (e.g., Liang et al., 2011). At every step of

the Markov Chain, a candidate model is sampled by perturbing the current model from

a known distribution (the proposal distribution q) and the acceptance ↵ is calculated.

A random number r is then sampled uniformly from the interval [0,1]. If r < ↵ the

proposed perturbation is accepted, else the old model is retained. The rationale behind

this algorithm can be explained by examining in more detail the expression for ↵ where
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Figure 1.6: A toy 2 parameter CSEM problem with true model parameters at 2100 m
and 100 ohm-m (encircled cross in all the plots), with 4% Gaussian noise added to the
synthetic data. a) A grid searched �2 misfit surface. Contours of RMS misfit have been
overlain on the misfit grid. b) The �2 misfit translated into likelihood which in this case
is the posterior PDF, using equation (1.25). c) First 2000 steps taken by the Markov
chain in sampling the model space. d) PDF of the scatterplot in c, but from all 20,000
samples barring the first 100 steps. Note how b) and d) are very similar, but have been
arrived at by using di↵erent techniques.
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Figure 1.7: Three hypothetical gradient based inversion paths shown in red. Depending
on the start model, or even with the same start model and di↵erent regularization choices,
at the end they produce models that may be at very di↵erent locations in the model
space. The true parameters as before, are indicated with an encircled cross.

↵(m0|m) = min

"
1,

p(d|m0)

p(d|m)
⇥ q(m|m0)

q(m0|m)

#
. (1.26)

Here m

0 is the new proposed model and m is the old model (throughout this

chapter, primes will denote new model values). Specifically, p(d|m0
)

p(d|m)

is the likelihood

ratio and q(m|m0
)

q(m0|m)

is the proposal ratio. In a classic MH algorithm with a fixed number

of dimensions, using uniform priors and symmetric proposals the acceptance term ↵

in equation (1.26) is reduced to a ratio of likelihoods (Yardim et al., 2006; Bodin and

Sambridge, 2009; Dettmer et al., 2010). Hence the algorithm always moves towards areas

of higher posterior probability if the data misfit improves (likelihood ratio > 1). However,

it can also move to areas of lower posterior probability with a probability ↵ if the misfit
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does not improve (likelihood ratio < 1). This is another key di↵erence between MCMC

sampling and optimization methods, both of which navigate a misfit / probability space

– the optimization methods always follow the gradient of u in equation (1.3), producing

a single model at the end (Figure 1.7) which may be highly dependent on start location

or the choices made in model regularization.

1.4.2 Marginal PDFs

With larger numbers of model parameters, it is not possible to visualize their joint

probability densities. In such cases, we are able to look at their marginal probabilities by

integrating out the dependence on other variables. For instance, in this two parameter

case, with the two variables z for bottom depth and ⇢ for reservoir resistivity, we can

integrate out the distributions for either variable in the following manner:

p(z) =

Z
p(z, ⇢)d⇢, (1.27)

p(⇢) =

Z
p(z, ⇢)dz. (1.28)

The above marginalization also generalizes to n-dimensions. In MCMC sampling,

the histogram of any sampled variable is the marginal distribution of that variable. The

joint and marginal densities for the two parameter case are shown in Figure 1.8. Also

shown in the plot for the joint PDF, are 70 randomly chosen1D models (in blue) from the

posterior PDF. Since we are going to ultimately look at multiple parameter problems,

where it will be impossible to visualize a histogram per parameter, we are going to switch

to the use of color intensity to represent histograms of resistivity at di↵erent depths, as

shown in Figure 1.9. In the left panel, we have binned all the vertical lines corresponding

to model resistivities (the vertical blue lines show 70 such model resistivities in Figure 1.8)

and colored the histogram heights according to ‘color hotness’ at every depth. To show

variability in the placement of interfaces with resistivity contrasts, in the right panel

of Figure 1.9, we have binned all the horizontal lines corresponding to interfaces in 1D

models (again, the horizontal blue lines show 70 such interfaces in Figure 1.8). A delta

function like spike is seen at 2000 m – the top depth of the reservoir was not allowed
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Figure 1.8: a) The blue lines show 70 random models associated with the posterior
PDF. True value shown by an encircled cross. b) Binning the horizontal blue lines, we
obtain a marginal PDF on the probability of placing the reservoir bottom depth. The
true value is shown with a red line. c) Binning the vertical blue lines, we obtain a
marginal PDF on the probability of the reservoir resistivity. Again, the true value is
shown with a red line.
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Figure 1.9: In the left pane, the model resistivity values sampled have been binned
every 5 m and colored according to the height of the PDF within a particular depth
range. Hotter colors are more probable. The true model is shown with a dashed black
line. Note how the distributions of resistivity with depth are not very Gaussian below
2100 m. The right pane bins the locations of interfaces from the sampled models in 5 m
intervals.
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to vary. A Gaussian-like distribution is seen centered around 2100 m depth, indicating

the uncertainty in placement of the reservoir bottom. The well known CSEM trade-o↵

between thicker more conductive layers and thinner more resistive layers is clearly visible

in the left panel. Note that we are now able to see how uncertain our solution to the

problem is, without making any assumptions about the ‘Gaussianity’ of our solution, as

would be required by a model covariance matrix approach (e.g., Menke, 2012). In fact,

we see that the PDFs of resistivity with depth are not very Gaussian at depths below

2100 m in the left panel of Figure 1.9.

1.4.3 Monitoring the progress of sampling

We show the sampling of model parameters by the Markov chain in the first two

rows of Figure 1.10. The third row shows the acceptance rate for sampling, which is a

measure of the e�ciency of the sampler. Too high or too low an acceptance rate implies

ine�cient sampling and will be discussed in detail later in Sections 2.2.8 and 4.A.6.

A good rule of thumb for higher dimensional problems is to aim for about 23% for

more than 6 parameters, based on considerations of convergence to a Langevin di↵usion

process (Chib and Greenberg, 1995; Roberts et al., 1997). The fourth row shows the

range of sampled root mean square (RMS) misfit values. These are obtained by taking

the �2 misfit for every model, dividing by the number of observed data points and taking

square root.

We must be careful to avoid the ‘burn-in’ samples (Figure 1.11) that do not form

part of a stationary Markov chain before forming our posterior model ensemble. These

samples are usually located in the low probability (or high misfit) areas of the model

space as shown in Figure 1.11a. Only the first 2000 samples have been shown in this

figure for clarity, as the Markov chain keeps traveling up and down the ‘probability crest’

over the next 18,000 samples. Zooming in to the first 100 samples (Figure 1.11b), the

true parameter values are shown with a dashed black line in the first two rows.
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Figure 1.10: The top two rows show the sampled values for reservoir resistivity and its
bottom depth, respectively. True values are shown with a dashed black line. The third
row shows the percentage of accepted model space steps made by the Markov chain in
every 100 steps. Too low or too high a value both indicate ine�cient sampling. The last
row shows the range of RMS misfits sampled by the Markov chain.



24

1.8 1.9 2 2.1 2.2

2070

2080

2090

2100

2110

2120

2130

2140

2150

Log
10

(ohm−m)

R
e

si
st

o
r 

b
o

tt
o

m
 d

e
p

th
 (

m
)

 

 

Sample 
no.

312 

625 

937 

1250

1562

1875

Burnin samples

(a)

(b)

Figure 1.11: The ‘burnin-in’ period of an MCMC chain illustrated. a) The first 2000
MCMC samples colored in sequence. True value shown by an encircled cross. b) The
same as Figure 1.10, but zoomed into the first 100 steps. True values are shown with a
dashed black line in the first two rows. We can see that the first 50 or so samples are in
high misfit, low probability regions of the model space. These are the ‘burn-in’ samlpes.
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Figure 1.12: The change point identification problem for a noisy synthetic time series.
a) The bright green line represents a ‘true model’ with abrupt ‘change-points’ in time. It
is perturbed with Gaussian noise to create a synthetic ‘time series’ (dark green points).
Using a partition modeling approach and Bayesian RJ-MCMC, we obtain a PDF on the
time series that can fit the noisy data. Darker colors are more probable. The mean
(dashed magenta) and median (dashed red) models are two statistics displayed from the
ensemble solution. The inset box shows a PDF on the number of interfaces required to
solve the problem. b) Posterior PDF of change points with time.
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1.5 Dealing with uncertain parameterizations

All too often in geophysical analysis, we are faced with a situation in which

we are not sure of how to parameterize the problem we are interested in. To be more

specific, we know the parameters we are interested in, but we are not sure how many

there are, or how these parameters are distributed in time or space. A prime example

arises in studying events as seen in a geochemical record that is not evenly sampled. This

time series analysis problem is analogous to what is known in statistical parlance as the

‘change-point analysis problem’ (CHIP) (e.g. Liang et al., 2011) and can be dealt with by

using a partition modeling approach (e.g., Gallagher et al., 2011). In this approach, any

model which explains the observed noisy data is divided into a number of partitions, the

locations and numbers of which are determined by the data themselves. In a Bayesian

framework, we will end up with an ensemble of partition models which explain the data.

From this posterior ensemble, once again we can derive important information regarding

the uncertainty about our model estimates. The CHIP problem can be e↵ectively solved

using the Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) technique Green

(1995) or the trans-dimensional MCMC method Sisson (2005). All the codes we have

developed in this dissertation use a trans-dimensional Bayesian mechanism. Our solution

to a CHIP problem for an irregularly sampled, noisy synthetic time series using Bayesian

RJ-MCMC is shown in Figure 1.12a. The ‘observed’ data with 1� error bars are shown

in dark green. A posterior PDF on the time series that fit the data has been shown

proportional to color. Darker colors correspond to higher probabilities. The number of

partitions are allowed to vary between 2 and 61 (inset figure), when in truth there are 5.

The dashed magenta line corresponds to the mean model and the red line corresponds

to the median of the ensemble models at every time. In this case, the mean and median

models are good estimates of the true model (bright green), and in Figure 1.12b we can

see that the locations of the change points have been inferred well despite the noisy data.

If we turn Figure 1.12a clockwise by 90� then it begins to look quite similar to

the left panel of Figure 1.9, albeit with a di↵erent color scale. Both plots are marginal

PDFs of models with time or depth. Thus, we can look at the CSEM inverse problem, as

another kind of problem suitable for treatment with the Bayesian RJ-MCMC or trans-

dimensional method. This is all the more appropriate as we really do not know where in
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the earth our layers or cells of resistivity are, or even how many there are. This problem is

not unique to CSEM, and RJ-MCMC has been applied to various geophysical problems

in the recent past. A detailed review of such work can be found in Sambridge et al.

(2013).

In later chapters, we deal in detail with the issues of subjective model regulariza-

tion and parameterization and how we can get around it using trans-dimensional Bayes’.

For now, we demonstrate very simply with Figure 1.13 how the chosen parameterization

a↵ects our final posterior ensemble solution. The true model is an anisotropic CSEM

resistivity model shown with a thick red line. In Figure 1.13a the subsurface has been

exactly parameterized to have the true number of layers, three. In Figure 1.13b, the

number of layers has been extended to 16. In Figure 1.13c, we have used the partition

modeling approach and RJ-MCMC where the number of layers is variable. In all cases,

darker colors in the left two panes correspond to higher probabilities on horizontal and

vertical resistivity. The blue lines correspond to the 5% and 95% quantiles of resistivity

with depth. The first two rows, with the exactly parameterized and over-parametrized

solutions were derived using a fixed dimensional MCMC sampler. When the number of

layers is known and fixed at the right positions (Figure 1.13a) – the problem does not

seem to be that uncertain - all distributions of resistivity with depth are quite narrow.

However, in geophysics, this level of prior knowledge about the subsurface is not avail-

able and we usually over-parameterize the problem (Figure 1.13b). However, now the

distributions of resistivity with depth are far wider and the model uncertainties seem far

larger. This is one of the reasons why over-parameterized gradient based inversions use

regularization to smooth a deterministic solution. If that were not the case, any individ-

ual solution that fits the data from within the posterior ensemble shown in Figure 1.13b

may be unrealistically oscillatory (Constable et al., 1987). Finally, when we allow the

number of resistivity interfaces and their locations to vary between 1 and 30, we obtain

the uncertainties shown in Figure 1.13c. In this case, we have let trans-dimensional

Bayes’ determine the layer parameterization from the data itself. We have sampled over

a number of parameterizations, as can be seen in Figure 1.14.

Finally, we mention here that trans-dimensional Bayes’ follows a ‘parsimony’

rule whereby models are preferred neither to be too simple nor too complicated. This
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(a) Exactly parameterized

(b) Over-parameterized

(c) Trans-dimensionally parameterized

Figure 1.13: MCMC inversion results for a synthetic CSEM resistivity model (red).
Darker colors correspond to higher probabilities. The 5% and 95% quantiles on resistivity
with depth are shown in blue. A more realistic view of uncertainty is obtained when we
allow the number of resistivity contrasts to be variable as in c).
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Figure 1.14: The number of interfaces required to likely fit the CSEM data for the
trans-dimensional inversion result shown in Figure 1.13c

is ensured by a synergy between adding more model parameters and deleting them.

For instance, if two spatially adjacent resistivities are similar, the algorithm will merge

them into one resistivity if the resulting data likelihood is reasonable. Conversely, if

splitting a resistive layer in two will likely fit the observed CSEM data, the two layers

are encouraged to have very di↵erent resistivities for the split to be acceptable. The

mathematical formulation of this idea is fully developed in Sections 4.A.4 and 4.A.5.

1.6 Full circle: connection between data and models

Finally, at this juncture, we would like to show the spread in data fit from the

sampled models in the RJ-MCMC posterior ensemble corresponding to Figure 1.13c.

The data fits from 100 randomly chosen posterior models are shown in Figure 1.15.

Most of these models fit the data well within the error bars, with the exception of a few,

which are required to form the tails of the posterior distribution.
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Abstract. The posterior distribution of earth models that fit observed geo-

physical data convey information on the uncertainty with which they are resolved. From

another perspective, the non-uniqueness inherent in most geophysical inverse problems

of interest can be quantified by examining the posterior model distribution converged

upon by a Bayesian inversion. In this work we apply a reversible jump Markov chain

Monte Carlo method to sample the posterior model distribution for the anisotropic 1-

D seafloor conductivity constrained by marine controlled source electromagnetic data.

Unlike conventional gradient based inversion approaches, our algorithm does not require

35
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any subjective choice of regularization parameter, and it is self parameterizing and trans-

dimensional in that the number of interfaces with a resistivity contrast at depth is vari-

able, as are their positions. A synthetic example demonstrates how the algorithm can be

used to appraise the resolution capabilities of various electromagnetic field components

for mapping a thin resistive reservoir buried beneath anisotropic conductive sediments.

A second example applies the method to survey data collected over the Pluto gas field

on the Northwest Australian shelf. A benefit of our Bayesian approach is that subsets

of the posterior model probabilities can be selected to test various hypotheses about the

model structure, without requiring further inversions. As examples, the subset of model

probabilities can be viewed for models only containing a certain number of layers, or

for models where resistive layers are present between a certain interval as suggested by

other geological constraints such as seismic stratigraphy or nearby well logs.
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2.1 Introduction

The ability of marine controlled-source electromagnetic (CSEM) data to detect

thin resistive layers such as hydrocarbon formations trapped in conductive sediments

is now well-known due to more than a decade of research conducted in conjunction

with the commercialization of CSEM technologies (e.g., Ellingsrud et al., 2002; Um and

Alumbaugh, 2007; Constable, 2010). Given a CSEM data set, the inverse problem is

to find a resistivity model compatible with the data. This non-linear ill-posed inverse

problem can be tackled in a number of ways. The traditional approaches used during the

past few decades for various EM geophysics applications have relied on regularization

methods that serve to stabilize the problem, usually through the use of norms that

penalize the model roughness or deviations from a preferred model (e.g., Constable et al.,

1987; Newman and Alumbaugh, 2000; Abubakar et al., 2008). Though highly e�cient

and well understood, these gradient based optimization methods only provide a single

smooth model as a result, or provide a suite of smooth models as a function of data

misfit. While such results can be considered robust in the sense that the smoothness

constraint tends to eliminate unnecessary or spurious features and retains only those

smooth features required to fit the data, these methods have a very narrow view of

the full range of models compatible with the data. Furthermore, questions about the

resolution of the resulting inverse models remain unanswered.

A solution to this problem is to utilize Bayesian methods to characterize model

resolution in terms of marginal probability density functions for each model parameter

(e.g., Sen and Sto↵a, 1995). Since Bayesian probability is a statement of information,

it is natural to postulate geophysical inversion in a Bayesian framework. Inversion thus

implies sampling a posterior model distribution, which depends on available prior in-

formation on likely models and the likelihood of the data fit for sampled models. The

posterior distribution of model parameters conveys information on the uncertainty with

which they are resolved. From another perspective, the non-uniqueness inherent in most

geophysical problems of interest can be quantified by examining the posterior model

distribution.

Our study is not the first to apply Bayesian methods for 1-D inversion of ma-

rine CSEM problems. One of the earliest applications focused on joint inversion of
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CSEM and seismic data in order to improve estimates of reservoir properties (Hou et al.,

2006; Chen et al., 2007). Trainor-Guitton and Hoversten (2011) use a sampling scheme

which involves both the Metropolis-Hastings algorithm and slice sampling (Neal, 2003)

in order to improve convergence upon the distribution of solution models. Buland and

Kolbjornsen (2012) apply the Metropolis-Hastings algorithm (Hastings, 1970) to invert

marine CSEM data together with magnetotelluric (MT) data in order to constrain the

range of likely resistivities as a function of depth.

While these inversions have indeed been probabilistic, they have not addressed

the issue of model selection, or scalability of the model space. That is to say, either the

number of layers and their depths have been fixed a priori using only a few parameters,

or the number of depth intervals is very large in order to allow for more structural

detail (requiring considerably more computational e↵ort). Having too few or too many

parameters will bias the inversion results (Dettmer et al., 2010). Tompkins et al. (2011)

address the issue of model space scalability for the marine CSEM problem by using either

a principle component analysis approach or singular value decomposition to transform

their model domain. This may result in a more e�cient search since the model space

is greatly reduced (Collins and Fishman, 1995), and has similarly been applied to geo-

acoustic inversion (Dosso and Dettmer, 2011). However, the approach of Tompkins

et al. (2011) is not Bayesian and requires a starting regularization as well as subjective

layer parameterization. Gunning et al. (2010) developed a ‘Bayesianized’ parametric

bootstrap method that splits layers to create resolution at depths statistically justified

by the CSEM data.

Our approach is to essentially use nothing more complicated than Bayes’ theorem

(Bayes, 1763) itself, and the idea of ‘Bayesian parsimony’ which states that the evidence

term in Bayes’ theorem prefers models with simpler model parameterizations (Dettmer

et al., 2010). To this end we apply the reversible jump Markov Chain Monte Carlo

(RJ-MCMC) method to characterize model uncertainty for marine CSEM data. This

approach was first introduced to the statistics community for change point analysis by

Green (1995) and deals with a variable number of unknowns, which in our case are

the number and positions of the model layers and their resistivities. The RJ-MCMC

method has found widespread use in a diverse number of fields from genetics (Huelsenbeck
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et al., 2004) to automated surveillance (Smith et al., 2005). In the geophysical realm,

Malinverno (2002) has applied it to DC resistivity data inversion and more recently

Agostinetti and Malinverno (2010) and Bodin et al. (2012) have used it for seismic

receiver function analysis. A recent application to airborne EM can be found in Minsley

(2011). Reversible jump MCMC methods are often said to be ‘trans-dimensional’, where

trans-dimensionality implies that the number of model parameters is variable. The

algorithm we follow has been used for the geo-acoustic problem (Dettmer et al., 2010)

and seismic surface wave tomography (Bodin and Sambridge, 2009), using the ‘partition

modelling’ approach outlined by Bodin and Sambridge (2009).

The manner in which this algorithm avoids regularization yet provides reasonable

solutions is elegantly simple. The results of the inversion, as in any Bayesian frame-

work, are not limited to a single ‘best-fit’ solution. Instead, the algorithm provides a

distribution of model solutions, the large majority of which fit the data to within its

uncertainty. The non-uniqueness inherent in most geophysical inverse problems due to

both the physics of the problem and a finite set of noisy observations implies that there

are an infinite number of models that fit the data. However, some parts of the model

space are more frequently required by models that fit the data than other parts of the

model space. It is these parts of the model space which are deemed to be more prob-

able (Backus, 1988; Tarantola, 2005). Since the model space is often high-dimensional,

the ensemble of models can be conveniently viewed via marginal distributions of the

parameters of interest (e.g., Sen and Sto↵a, 1995).

Here we present the theory for a trans-dimensional RJ-MCMC with an adapta-

tion that mixes local and global steps in the model space to ensure thorough sampling

of the model space. We then proceed with two example applications for marine CSEM

inversion. The first is a resolution test for resistivity anisotropy in a model of a thin

resistive layer representing an o↵shore hydrocarbon reservoir and the second is an appli-

cation to CSEM survey data collected over the Pluto gas field in the Northwest Shelf of

Australia.
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2.2 Theory and Algorithm

2.2.1 Anisotropic forward modelling

The analytic expressions for the electromagnetic (EM) fields in media that are

transversely isotropic about the vertical (TIV) due to electric and magnetic dipole trans-

mitters are given in Appendix F of Løseth and Ursin (2007). As an illustrative example,

we provide here the integral transform for the radial electric field due to a horizontal

electric dipole (HED) at an azimuth � and range r from the dipole, normalized by the

source dipole moment:
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In the above equations, k
r

is the radial wavenumber, J
0

and J
1

are Bessel functions of

order 0 and 1, respectively, and the integrations are over all possible wavenumbers k
r

.

The functions gTE(p
zI

) and gTM (p
zII

), which are functions of k
r

, contain information

about the seabed resistivity structure in the form of the generalized transverse electric

(TE) and transverse magnetic (TM) reflection coe�cients of a stack of conducting layers,

including the air, sea and seafloor sediments. Full expressions for these functions can be

found in Løseth and Ursin (2007) or derived in a slightly di↵erent form in Chew (1995).

For the case of TIV anisotropy, from equations 119 in Løseth and Ursin (2007),

it can be shown that within a given layer
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where "̃ = "+ i�

!

is the complex permittivity with the corresponding conductivity �
h

or

�
v

for the horizontal or vertical directions within the layer. The terms " and µ are the

permittivity and permeability of free space, respectively. The term p
zI

is the vertical

‘slowness’ (vertical wavenumber divided by the angular frequency !) associated purely

with the TE mode while the term p
zII

is associated only with the TM mode. Thus,

from equations (2.5) and (2.6) it is apparent that the TE mode depends only on the

horizontal conductivity while the TM mode depends on both the horizontal and vertical

conductivity (e.g., Ramananjaona et al., 2011); this is expected given that the TE mode

in 1-D layered structures is associated only with horizontal currents while the TM mode

is associated with both horizontal and vertical currents.

The complete suite of fundamental dipole sources also includes the vertical elec-

tric dipole (VED), the horizontal magnetic dipole (HMD) and the vertical magnetic

dipole (VMD). Each source produces particular modes in the EM field components, as

listed in Table 2.1. The specific integral expressions each field component and source

type can be found in Løseth and Ursin (2007). For both the HED and HMD, the ex-

pressions for the radial electric field E
r

, azimuthal electric field E
�

, the radial magnetic

field H
r

and the azimuthal magnetic field H
�

are mixtures of TE and TM modes, thus

they contain sensitivity to both the horizontal and vertical conductivity of the seabed.

Likewise, the three field components produced by a VED are entirely TM mode fields,

which equation 2.6 shows to contain sensitivity to the conductivity anisotropy. Con-

versely, the E
�

, H
r

and H
z

components produced by a VMD are only TE mode fields

and therefore are only sensitive to horizontal conductivity. Similarly, the H
z

produced

from either a HED or HMD is TE mode only and hence it is completely blind to the

vertical conductivity.

While our understanding of the CSEM sensitivity to anisotropy is aided by knowl-

edge of the modes present in each component, this knowledge does not address how well

each component can resolve anisotropic conductivity. In an earlier study for isotropic

conductivity, smooth inversions of synthetic data from each field component were used

to identify which components can best recover a thin resistive layer representing a hy-

drocarbon reservoir, finding the HED transmitter to be overall superior for recovering

the resistive layer as compared to the VED (Key, 2009). While the smooth inversions
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Table 2.1: Modes present in the various EM field components produced by each of the
four fundamental electric and magnetic dipoles sources when embedded in 1-D layered
media.

Component HED VED HMD VMD

E
r

TE,TM TM TE,TM
E

�

TE,TM TE,TM TE
E

z

TM TM TM
H

r

TE,TM TE,TM TE
H

�

TE,TM TM TE,TM
H

z

TE TE TE

were adequate for this purpose, they only produce a single conductivity model and o↵er

no insights on the full range of models that might fit a given data set. Later in this work,

we expand on this study by carrying out a Bayesian uncertainty analysis to characterize

the resolution possible with each field component and also extend the model to include

a modest amount of anisotropy in the overburden.

While either of the HED and HMD sources might be best for resolving anisotropy

since they have the richest combination of modes, for practical reasons most marine

CSEM surveys use a HED source. Very long HED antennas (100-500 m) can be deep-

towed just above the seabed, creating a large source dipole moment that o↵ers good

signal-to-noise ratio data to long source-receiver o↵sets, whereas practically achievable

HMD dipole moments result in much lower amplitude electric and magnetic fields and

hence lower signal-to-noise ratios and a more limited range of usable source-receiver

o↵sets. Hence the resolution study we present will focus only on the HED source.

2.2.2 Bayesian inversion

In the most general sense, the goal of geophysical studies is to provide information

about the subsurface geology. Since Bayesian probability is a statement of information

(e.g., Scales and Snieder, 1997), a Bayesian framework for geophysical inversion seems

natural to postulate. We begin with Bayes’ Theorem,

p(m|d) = p(d|m)p(m)

p(d)
, (2.7)
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where d is the vector of observed data and m is a vector of model parameters. However,

in a Bayesian approach, all information is contained in probability density functions

(PDFs) represented by the notation p(.). The idea is to estimate the posterior model

distribution p(m|d) (i.e., the probability of the model given the data) starting from the

knowledge of a prior model distribution p(m) given the observed data d. The information

contained in the data is inserted into Bayes’ theorem using the likelihood function p(d|m)

which is the probability of the data given the model, (essentially the PDF of the data

misfit as a function of m). Assuming the noise in the data is Gaussian, we have the

following likelihood function:

p(d|m) / exp

 
� [d� f(m)]TCd

�1[d� f(m)]

2

!
, (2.8)

where f(m) is the predicted data due to model m and Cd is the data covariance matrix,

assumed here to be a diagonal matrix of data noise variances. The likelihood function

in equation (2.8) is formulated such that models with lower misfit demand a higher

likelihood while poorly fitting models have less likelihood.

The evidence term p(d) is equal to an integration of the numerator in the RHS

of (2.7) over all possible models, and is therefore only a normalizing constant to ensure

that p(m|d) integrates to 1; consequently it can be ignored, providing the following

relationship:

p(m|d) / p(d|m)p(m). (2.9)

Thus it is now a matter of sampling the right hand side of equation (2.9) to obtain the

solution to the inverse problem and obtain the posterior model distribution. However, it

is not possible to exhaustively sample the model space for more than a few parameters,

hence in practice one resorts to e�cient sampling methods like the Markov chain Monte

Carlo (MCMC) method (e.g., Liang et al., 2010).

2.2.3 Reversible Jump MCMC

The Reversible Jump MCMC method (RJ-MCMC) is a particular type of

Metropolis-Hastings (MH) algorithm (e.g., Liang et al., 2010) that allows one to search

the model space such that models are not restricted in the number of parameters they
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may posses. Thus, they are said to be ‘trans-dimensional’ in the number of model

parameters. In the context of the CSEM problem, the number of resistivity contrasts

in the seabed is usually unknown a priori and should also be considered a part of

the inverse problem. Malinverno (2002) considered this aspect of ‘model selection’

for the DC resistivity problem and Minsley (2011) applied this idea to the airborne

frequency-domain EM problem. Formulating the inverse problem in a trans-dimensional

manner allows for a broader characterization of the posterior model distribution, as

demonstrated by Dettmer et al. (2010) for the geo-acoustic problem and Bodin and

Sambridge (2009) for seismic tomography. There is a natural ‘parsimony’ (Malinverno,

2002) built into the Bayesian RJ-MCMC framework. Simple models that fit the data

well by using a few parameters are favoured over models with a larger number of

parameters; this aspect of the RJ-MCMC Bayesian approach is similar to Occam’s

inversion, in which a penalty against model roughness is used find a smooth model

that only contains features required to fit the data (Constable et al., 1987). However,

the trans-dimensional algorithm does not require any regularization or smoothing

parameters, which are usually subjective choices for gradient based inversion methods.

In short, a Bayesian RJ-MCMC framework is a truly data driven inversion scheme that

parameterizes itself as demanded by the data.

The remainder of this section describes the details of the RJ-MCMC approach

for the interested reader, but one could without loss of continuity skip to the example

applications given in section 3.

2.2.4 Prior information and model parameterization

In a pure Bayesian framework, prior information encapsulates knowledge about

the model which is independent of the data. In order to be as general as is physically

feasible, we use bounded uniform priors for all the model parameters of interest. In this

section we closely follow the prior parameterization approach of Bodin and Sambridge

(2009) but use interfaces (Dettmer et al., 2010) instead of Voronoi cells. We parameterize

each model m as having n interfaces at depths z, and therefore n+1 resistivities each for

the horizontal resistivity ⇢
h

and for the vertical resistivity ⇢
v

, where resistivity ⇢ = ��1.
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The number of layers is fixed for a given model m, hence

p(m) = p(m|n)p(n). (2.10)

We use a uniform prior on n, given by

p(n) =

8
<

:

1

n

max

�n

min

if n
min

 n  n
max

0 else
. (2.11)

We assume no a priori knowledge between the depth of interfaces in the model and the

layer resistivities (also considered independent), therefore their PDFs can be separated

in the following product form,

p(m|n) = p(z|n)p(⇢
h

|n)p(⇢
v

|n). (2.12)

Assuming interfaces can be located anywhere in the subsurface between z
max

and z
min

such that an interface can be at any of N (temporarily discrete) depths, for n interfaces,

we can arrange them without paying attention to their ordering in N !

n!(N�n)!

ways. Note

that this unspecified variable N will cancel out of the expressions we need to use in the

algorithm and is only introduced for ease of mathematical derivation. Thus,

p(z|n) =

8
>><

>>:
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N !
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#�1

if z
min

 z  z
max

0 else

. (2.13)

Assuming that all n + 1 resistivities, ⇢
h

and ⇢
v

lie uniformly between ⇢
min

and ⇢
max

,

independent of each other, we write

p(⇢
h

|n)p(⇢
v

|n) =

8
>><

>>:
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1
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#
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0 else

. (2.14)
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To obtain the explicit expression for the prior model probability, we write �⇢ = ⇢
max

�

⇢
min

and �n = n
max

� n
min

and substitute equations (2.11) – (2.14) into (2.10) to get

p(m) =

8
<
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n!(N�n)!

N !�n(�⇢)

2n+2 if z 2 [z
min

, z
max

] and ⇢ 2 [⇢
min

, ⇢
max

], 8n 2 [n
min

, n
max

]

0 else
.

(2.15)

2.2.5 MH algorithms and the acceptance probability

What guides an MCMC sampler like the MH algorithm to convergence upon

the posterior distribution is the acceptance probability ↵ (e.g., Liang et al., 2010). At

every step of the Markov Chain, a candidate model is sampled by perturbing the current

model from a known distribution (the proposal distribution q) and the acceptance ↵ is

calculated. A random number r is then sampled uniformly from the interval [0,1]. If

r < ↵ the proposed perturbation is accepted, else the old model is retained. The rationale

behind this algorithm can be explained by examining in more detail the expression for

↵ (Bodin and Sambridge, 2009), where

↵(m0|m) = min

"
1,

p(m0)

p(m)
⇥ p(d|m0)

p(d|m)
⇥ q(m|m0)

q(m0|m)
⇥ |J|

#
. (2.16)

Here m

0 is the new proposed model and m is the old model (throughout this paper,

primes will denote new model values). Specifically, p(m0
)

p(m)

is the prior ratio, p(d|m0
)

p(d|m)

is the

likelihood ratio and q(m|m0
)

q(m0|m)

is the proposal ratio. The Jacobian term |J| is not to be

confused with the model Jacobian needed for gradient based inversions (e.g., Constable

et al., 1987), but is a matrix that incorporates changes in model dimension when moving

from m to m

0. In a classic MH algorithm with a fixed number of dimensions, the prior

ratio, proposal ratio (for symmetric proposals), and Jacobian term are all 1 (Dettmer

et al., 2010). Hence the algorithm always moves towards areas of higher posterior prob-

ability if the data misfit improves (likelihood ratio > 1). However, it can also move to

areas of lower posterior probability with a probability ↵ if the misfit does not improve

(likelihood ratio < 1).

To be able to compare likelihoods between models with di↵erent numbers of

parameters (i.e., with di↵erent dimensions), the Jacobian in the acceptance term in
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equation (2.16) needs to be evaluated. There are various implementations of RJ-MCMC,

and in all the examples cited so far, a ‘birth-death’ scheme has been used. As shown in

Bodin and Sambridge (2009) and Dettmer et al. (2010) for the ‘birth-death’ RJ-MCMC

scheme, this Jacobian term is unity. We have adopted the ‘birth-death’ algorithm in this

paper and shall not concern ourselves with this Jacobian term any further.

As to why the algorithm should not always look to improve the data fit by simply

increasing the number of parameters (interfaces in the seabed), if we examine equation

(2.16) we find that even if the likelihood ratio times the proposal ratio is greater than

one for a proposed move that inserts a new interface into the model, the prior ratio will

be less than one owing to the fact that the new prior PDF p(m0) needs to integrate over

a larger number of parameters to equal 1. Hence, there is an opposition to the ‘birth’ of

a new layer (which may lead to improvement of data fit) by the prior ratio.

2.2.6 Outline of our algorithm

We start the algorithm with a ‘minimum structure model,’ following the approach

of Agostinetti and Malinverno (2010). Placing one layer above a halfspace (i.e., n = 1)

we start with a single interface and then allow the algorithm to iteratively add interfaces

(‘birth’) or remove them (‘death’), perturbing the layer resistivities, as the data may

demand via the acceptance probability ↵ in (2.16).

We then closely follow the ‘partition modelling’ approach of Bodin and Sambridge

(2009), but use layer interfaces instead of their Voronoi cells (Dettmer et al., 2010). We

perturb candidate model resistivities just as Agostinetti and Malinverno (2010) perturb

elastic properties for their seismic receiver function problem. We depart from the above

methods in our implementation by randomly using a local (small) or global (large) pro-

posal for perturbing resistivities when the number of dimensions is fixed (i.e., it is not

a birth or death move) as suggested in Andriéu et al. (2003). In brief, this is how we

proceed:

Initialization

Start the algorithm with n = 1 and layer resistivities sampled randomly from the

uniform prior distribution represented by equation (2.14),
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Update layer properties

At every even numbered step we perturb all the 2(n+1) layer resistivities about

their current values using a Gaussian proposal q(m0|m) with a standard deviation ⌃
⇢

,

where

q(m0|m) =

 
1p
2⇡⌃

⇢

!
2n+2

exp

"
� 1

2⌃2

⇢

(⇢0 � ⇢)T (⇢0 � ⇢)

#
. (2.17)

Note that this update move does not involve a change in the number of interfaces.

It is in this move that we depart from previously carried out work, by randomly

switching between an update proposal step size of ⌃
⇢

to a smaller step size f⌃
⇢

. f

is a fraction to be determined by the problem at hand and is constant throughout the

algorithm. The randomly selected step size allows the algorithm to take global or local

steps while sampling the model space during fixed dimension moves (Andriéu et al.,

2003).

Perturb model geometry

At every odd numbered step we allow one of the following 4 moves:

1) Birth of an interface: n0 = n + 1. Uniformly between z
min

and z
max

, we randomly

select an unoccupied depth and insert an interface. The layer above or below the newly

created interface is randomly selected and only its horizontal and vertical resistivity are

perturbed according to a 2D Gaussian proposal with standard deviation ⌃0
⇢

.

2) Death of an interface: n0 = n � 1. An existing interface is selected at random and

deleted. The new horizontal and vertical resistivity in the layer are randomly copied

from one of the two layers that used to exist on either side of the deleted interface.

3) Move an interface: n0 = n. An existing interface is selected at random and its depth

perturbed by a 1-D Gaussian proposal with standard deviation ⌃
m

. If the new interface

depth is shallower or deeper than the interfaces currently above or below it, this move

can be thought of as a simultaneous death/birth move. i.e., properties from one of the

layers on either side of the old interface are copied (at random) and assigned to one of

the layers on either side of the new interface position (also at random).

4) No perturbation: n0 = n and z

0 = z.

Each of these model geometry perturbation moves is applied with a certain prob-
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ability, such that their sum equals 1. In addition, the birth and death probabilities are

set equal. We set the probabilities as follows: [birth, death,move, no perturbation] ⌘"
3

8

, 3
8

, 1
8

, 1
8

#

At each step of the Markov chain, the proposed model is evaluated for acceptance.

If it is accepted, it becomes the current model. If it is rejected, the current model

is preserved and the algorithm moves on to the next step. In order to compute the

acceptance, one needs to evaluate equation (2.16), for which we explicitly describe the

proposal distributions and their ratios in the next section.

2.2.7 Proposal distributions and acceptance probabilities

Our proposal distributions are similar to those described in Bodin and Sambridge

(2009) and Dettmer et al. (2010), but since the trans-dimensional approach to the best

of our knowledge has not been used for solving the CSEM problem we review the model

proposals in modest detail here.

Fixed dimension moves

For all moves that are neither birth nor death, the number of interfaces remain

fixed. In these moves, we have elected to use Gaussian proposals to suggest the new model

parameters by centering the proposals on the old parameters and drawing a random

number from a normal distribution with a given standard deviation (step size). As can

be seen from equation (2.17) these kinds of moves are symmetric, implying that the

probability to go from the old state to the new state is the same as it would be in going

from the new state to the old state:

"
q(m|m0)

q(m0|m)

#

fixed

= 1. (2.18)

Since the number of dimensions remains constant, the prior ratio in equation (2.16) is 1.

Hence for fixed dimension moves, we find that the acceptance probability is simply the
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ratio of the likelihoods:

↵
f

=

8
>><

>>:

min

"
1, p(d|m

0
)

p(d|m)

#
if z 2 [z

min

, z
max

] and ⇢ 2 [⇢
min

, ⇢
max

], 8n 2 [n
min

, n
max

]

0 else

.

(2.19)

Birth move

For a birth move, one can select from out of N � n unoccupied spaces. The

perturbations for the birthed layer’s horizontal and vertical resistivity are drawn from

a 2D Gaussian with standard deviation ⌃
bd

, centered about the old values in the layer.

Since the selection of an interface depth and the perturbations are independent, we can

write

q(m0|m) = q(z0|m)q(⇢0|m) (2.20)

=
1

(N � n)

1

2⇡⌃2

bd

exp

"
�

(⇢0
h

� ⇢
h

)2 + (⇢0
v

� ⇢
v

)2

2⌃2

bd

#
. (2.21)

For the reverse move in a birth, keeping in mind that the current state has n interfaces,

a birth would have n + 1 interfaces to delete from, and the probability of removing

resistivities in a layer in the reverse move is 1, thus we can say that

q(m|m0) = q(z|m0)q(⇢|m0) (2.22)

=
1

(n+ 1)
⇥ 1. (2.23)

Thus in a birth move, from equations (2.21) and (2.23), the proposal ratio can be written

as "
q(m|m0)

q(m0|m)

#

birth

=
(N � n)2⇡⌃2

bd

n+ 1
exp

"
(⇢0

h

� ⇢
h

)2 + (⇢0
v

� ⇢
v

)2

2⌃2

bd

#
. (2.24)
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Finally from equations (2.15), (2.16) and (2.24) we get for the birth moves, the following

acceptance probability

↵
b

=

8
>>>>><

>>>>>:
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2⇡⌃

2
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2
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, ⇢
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,]

8n 2 [n
min

, n
max

]

0 else

. (2.25)

Death move

In a death move, one can select one of n places for deletion. Further, the proba-

bility of removing resistivities in a layer is certain. Thus,

q(m0|m) = q(z0|m)q(⇢0|m) (2.26)

=
1

n
⇥ 1. (2.27)

In the reverse move for death, since the reference state has n interfaces, there are N �

(n � 1) sites at which to add an interface. Further, the resistivity perturbations are

proposed using a 2D Gaussian centered around the current values. Hence

q(m|m0) = q(z|m0)q(⇢|m0) (2.28)

=
1

N � n+ 1
⇥ 1

2⇡⌃2

bd

exp
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h

� ⇢0
h
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v
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2⌃2

bd

#
. (2.29)

Thus we can see from equations (2.27) and (2.29) that the proposal ratio for death can

be written as:

"
q(m|m0)

q(m0|m)

#

death

=
n

(N � n+ 1)2⇡⌃2
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. (2.30)

Again from equations (2.15), (2.16) and (2.30) we get for the death moves, the following

acceptance probability
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It should be noted that the derived expressions for ↵ in equations (2.19), (2.25) and

(2.31) do not involve the variable N (as promised) and are very similar in form to the

expressions derived in Bodin and Sambridge (2009). This demonstrates how flexible the

algorithm is when solving completely di↵erent kinds of geophysical problems.

2.2.8 Convergence to the posterior distribution

The algorithm is run for a given number of steps until it is deemed to have

collected enough samples to provide a reasonable estimate of the posterior. There are a

couple of caveats in this regard, as there are with any MCMC sampler (Liang et al., 2010).

If the algorithm is seeded with an initial model that is in a low posterior probability

region, it may take quite a few steps till it reaches a region of high posterior probability,

such that it begins to sample models which fit the data within the given data error.

The number of such required steps (which are subsequently discarded in the final chain)

is known in MCMC parlance as the ‘burn-in’ period, which depends on how well the

proposal distributions have been scaled (Chib and Greenberg, 1995). This brings us

to the step sizes (scaling) in the proposal distributions in the form of the standard

deviations ⌃
⇢

,⌃
m

,⌃
bd

and the fraction f required in the various proposals to generate

a new candidate model. The form of the proposal distributions should ‘emulate’ the

posterior for e�cient sampling, but since the posterior distribution may be complicated

(and unknown a priori), any kind of simple distribution, symmetric where possible, can

be used. The exact form of the proposal does not a↵ect convergence. The suitability

of the step size for the problem at hand can be examined by looking at the number of

samples accepted in a large interval of steps, referred to as the acceptance rate. If the

acceptance rate is too low, it means that the step sizes are too large as lots of steps are

falling outside the prior bounds or are being rejected as they land in low probability

(high misfit) areas. If the acceptance rate is too high, then it implies that the algorithm

isn’t exploring the model space enough and will again be slow to converge upon the

posterior distribution. While the sampled posterior should not depend on the size of the

steps taken, one has to factor in the optimality of the step size as otherwise convergence

will be very slow (Bodin and Sambridge, 2009). For an illuminating discussion on this

matter, one can refer to Chib and Greenberg (1995) or Trainor-Guitton and Hoversten
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(2011) for a more recent discussion relevant to marine CSEM. For further discussions on

convergence diagnostics and the practicality of their application, one can refer to Liang

et al. (2010) The algorithm should be run long enough at the lowest acceptable RMS

(achieved after the burn-in period) such that there is at least stationarity achieved in

the square misfit with iteration number. Further, to ensure that the inferred posterior

is not biased due to being trapped in local maxima (of the posterior probability), we

recommend that the algorithm be run from many di↵erent starting points, ideally in

parallel for computational e�ciency. The final ensemble for posterior inference can be

constructed by concatenating the various parallel chains (e.g., Dettmer et al., 2010;

Agostinetti and Malinverno, 2010; Bodin et al., 2012).

2.2.9 Implementation Details

We implemented the trans-dimensional Bayesian inversion algorithm in MAT-

LAB since it allowed for rapid prototyping, testing and modification. Specifically, we

coded the comprehensive suite of equations for magnetic and electric dipole sources em-

bedded in TIV anisotropic media that are listed in Appendix F of Løseth and Ursin

(2007). The Hankel transform integrals are evaluated using the digital filters and lagged

convolution MATLAB codes that are freely-available in Key (2012a). In order to speed

up the program’s performance, the portion handling the 1-D CSEM forward calls was

converted to C and precompiled as a MEX (MATLAB Executable) using the MATLAB

Coder utility. The numerical CSEM responses from the forward code were validated

by comparisons with suites of anisotropic responses given in Løseth and Ursin (2007)

and Li and Dai (2011). We validated the reliable sampling of the trans-dimensional

Bayesian algorithm by ensuring that we could sample and recover the specified uniform

prior model distribution by removing the data and running the RJ-MCMC algorithm.

Since resistivity can span many orders of magnitude, we follow the usual approach for

EM geophysics and parameterized the code to invert for log
10

(resistivity) rather than its

linear counterpart.
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2.3 Example Applications

2.3.1 Synthetic studies for the resolution of a thin resistive layer

In this example application, we use the trans-dimensional inversion algorithm

to study how well each CSEM field component can resolve the anisotropic resistivity of

an o↵shore hydrocarbon reservoir model. In a previous study conducted for a simple

isotropic reservoir model, the Occam inversion method was used to find the smoothest

inversion model for each data component, generally showing that the field components

from a HED are best able to recover the sediment and reservoir resistivity as compared

to a VED (Key, 2009). Additionally, because the HED data are the most commonly

collected on commercial surveys, we restrict our synthetic studies here to data generated

from a HED.

The model under consideration is based on the well-studied canonical 1-D reser-

voir model (e.g., Constable and Weiss, 2006) but here has been updated to include a

moderate amount of anisotropy in the overburden sediments, as shown in Fig. 2.1. The

main feature of the model is a 100 m thick, 100 ohm-m isotropic reservoir located 1 km

beneath the seafloor. The overburden resistivity is 1 ohm-m in the horizontal direction

but 4 ohm-m in the vertical direction, representative of bulk anisotropy due to sediment

layering.

We modeled 20 source-receiver o↵sets spaced evenly from 0 to 12 km, with the

transmitter positioned 10 m above the seafloor and broadcasting frequencies 0.1, 0.3

and 0.7 Hz. As an example of the contributions of the various model features to the

CSEM responses, Fig. 2.2 shows the inline radial electric field E
r

magnitude versus

o↵set (MVO) and phase versus o↵set (PVO) responses for the anisotropic model (red),

a similar model but where the sediments are isotropic with 1 ohm-m resistivity (green),

and a model with a uniform 1 ohm-m isotropic sediments (dashed blue). The resistive

reservoir can be seen to be the largest contributor to the responses, but the overburden

anisotropy also contributes substantially to the increased MVO responses accompanied

by markedly di↵erent PVO responses.

Synthetic data were generated for both inline and broadside transmitter geome-

tries by adding 5% random Gaussian noise to the model responses and then removing
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Figure 2.1: Synthetic model of a thin resistive hydrocarbon reservoir with overlying
anisotropic conductive sediments. The horizontal resistivity is shown in solid black, and
the vertical resistivity with blue dashes.
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Figure 2.2: Source normalized CSEM responses shown as magnitude versus o↵set
(MVO) and phase versus o↵set (PVO) curves for the radial electric field at 0.7 Hz pro-
duced by a horizontal electric dipole (HED). Plotted responses correspond to an isotropic
1 ohm-m seafloor in 1 km of water (dashed blue), the isotropic model corresponding only
to ⇢

h

in Fig. 2.1 (green) and the full anisotropic model in Fig. 2.1 (red).
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data below amplitudes of 10�15 V/Am2 for electric fields and 10�18 T/Am for magnetic

fields, representative of the electric and magnetic field noise floors for currently available

CSEM transmitter-receiver systems with 60 second data stacks.

The trans-dimensional algorithm was independently applied to the synthetic

noisy data for each of the 6 EM field components in order to obtain the marginal PDFs

on the model parameters, which then can be used to compare the resolution properties of

each component. We allowed the number of interfaces to range from 1-30, and the range

of depths at which to place interfaces from 1005 m to 2500 m. We used uniform prior

distributions on the log-resistivities in the seafloor that allowed them to vary between -1

and 2.3 (corresponding to linear resistivities of 0.1 to 200 ohm-m). For each field compo-

nent, a total of 200 MCMC chains were run in parallel (each starting point was randomly

sampled from the prior distribution), with 2 million steps taken in each each chain. Ap-

proximately 1/3 of the chain length was discarded as part of the initial ‘burn-in’ process

(Dettmer et al., 2010) and the remaining steps were collected. The length of the ‘burn-in’

period was determined by monitoring for when the algorithm reached an RMS data mis-

fit value of ⇡ 1 (corresponding to a �2 value equal to the number of data points); after

the burn-in period, the algorithm continued to sample models that fit the data within an

acceptable data RMS misfit. The final concatenated MCMC chain is constructed from

all 200 parallel runs, but with care to only concatenate chains that have converged upon

the region of acceptable RMS. Those chains, which even after ‘burn-in’ failed to achieve

an RMS close to 1 were discarded (Trainor-Guitton and Hoversten, 2011). For each field

component’s inversion, the final concatenated chains consists of roughly 200,000 models

after thinning the chain to retain 1 out of every 1000 samples (as a means of reducing

the storage requirements and the burden for later plotting algorithms). We found that

a further decimation of 1 in every 4 models produced acceptable PDFs, with a final

sample size of around 50,000 models. Since this trans-dimensional method has not been

applied to marine CSEM data before (to the best of our knowledge), we preferred to

be cautious rather than undersample the parameter PDFs. The implication is that we

potentially could have used a smaller number of parallel MCMC chains or a shorter chain

length, or some combination of both to significantly reduce the computational load of

this task, given that we achieved acceptance rates between 12%-22%. These acceptance
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rates are in agreement with those reported by Dettmer et al. (2010) and Agostinetti and

Malinverno (2010).

The final ensembles for each data component consist of about 50,000 1-D models,

each of which contains a variable number of layers, the layer interface depths and the

horizontal and vertical resistivities of each layer. To visualize the range of acceptable

resistivities, we binned these parameters into a grid of fine depth intervals to produce a

histogram of resistivities at each depth, normalized by the total number of resistivities

encountered in a depth bin. Higher histogram values at a particular depth bin indicate

a higher probability of the resistivity being at the corresponding value at that depth.

Likewise, the probability that an interface exists at a certain depth is shown by binning

the interface depths required by the various models over a range of fine depth intervals.

The results are shown in Fig. 2.3, where each row corresponds to an inversion

of a certain EM field component. In every row, the first two columns correspond to

PDFs of the horizontal and vertical resistivity as a function of depth, with the 5% and

95% quantiles at each depth shown in blue. The true model is shown in red, and higher

values of probability at a depth are shown by darker shading. The third column in

each row corresponds to the probability of a layer interface at a given depth, with the

true values at which interfaces are located indicated by red horizontal lines. The fine

black vertical line in this column corresponds to a uniform probability on the location

of interfaces. Again, higher values indicate a greater probability for the presence of a

resistivity contrast at the corresponding depth. Fig. 2.4 shows the probability of the

number of interfaces required for each particular field component, where the vertical red

line denotes the true value of 2 interfaces for our 3 layered anisotropic model.

From the synthetic inversions we can make a number of observations. The vertical

resistivities for all components (with the exception of H
z

which is a pure TE mode) have

the most probable value aligned with the true value at shallower depths. At the reservoir

and greater depths, the well-known trade o↵ between reservoir thickness and resistivity

(Constable and Weiss, 2006; Key, 2012b) results in the PDFs being more di↵use, yet still

concentrated near the true resistivity. Further, there is a marked increase in the 95%

quantile line in the vicinity of the reservoir whereas at much shallower depths the 95%

quantiles suggest there is little probability of a resistive layer.
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Figure 2.3: Trans-dimensional Bayesian inversion of synthetic HED data with 5% added
noise. The results from independent inversion of each field component are shown row-
wise. Marginal distributions on anisotropic resistivity values at depth are shown as
shaded colors in the first two columns while the third column indicates the probability
of an interface. 5% and 95% quantile lines are shown in blue and the true values are
indicated by red lines. The top three rows correspond to the components measured by
receivers inline with the HED while the bottom three rows are for components measured
by receivers broadside to the HED.
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Figure 2.4: Probability of the number of interfaces determined from independent in-
versions of synthetic data for each field component. The true number of interfaces (2) is
shown by the red line. The fine dashed black horizontal line corresponds to a uniform
probability on the number of interfaces.
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For the horizontal resistivities, the most probable values at shallow depths are

also closely aligned with the true value until the reservoir level, where there is an abrupt

decrease as the PDF becomes greatly spread out with no significant peak and the con-

fidence of the estimate (indicated by the width between the 5% and 95% quantiles) at

these depths is quite low. This inability to resolve the horizontal resistivity within the

reservoir is not surprising, as the current density in the resistive reservoir layer becomes

predominantly vertically polarized with little horizontal flow and hence contains greatly

diminished sensitivity to the horizontal resistivity at this depth (Brown et al., 2012).

There is however, a slight increase in the 95% limit around the reservoir depth at least

suggesting the probability of an increased resistivity at this depth. Perhaps surprisingly,

the lower halfspace resistivities are well imaged by the horizontal resistivity PDFs, prob-

ably owing to the fact that to complete the circuit, current must flow horizontally at this

depth.

The interface depth probabilities in Fig. 2.3 show that all components (with the

exception of H
z

) have a high probability for layer interfaces near the correct depths

of the reservoir. Some estimate well either the reservoir top (by E
r

) or the reservoir

bottom (by H
�

or H
r

) or both the top and bottom (by E
�

and E
z

). The vertical

magnetic field H
z

seems unable to clearly estimate either the reservoir top or bottom,

but this is unsurprising given that it only contains the TE mode which is well-known to

be insensitive to thin resistive layers. The ability of the E
z

to recover both the top and

bottom depths of the reservoir is intriguing, particularly since previous smooth inversion

studies suggested it has slightly lower resolution for the reservoir thickness (see Fig. 7 in

Key, 2009). While all other components (besides H
z

) contain a mixture of TE and TM

modes, the E
z

component only contains the TM mode; perhaps its ability to resolve the

reservoir boundaries is due to galvanic charge accumulation e↵ects. Further exploration

of this result is clearly warranted but is beyond the scope of this work.

Anisotropy in the shallower section is well resolved by all components (again

with the exception of H
z

), with the tightest bounds on anisotropy being given by the

inline radial electric field. For all these components, a good indicator for the presence

of a resistive reservoir seems to be the combination of the peak in the interface depth

probabilities aligning with a high probability of large vertical resistivity. As can be seen
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in Fig. 2.3, this alignment occurs around the true reservoir vertical resistivity and depth.

The probability for the number of interfaces shown in Fig. 2.4 illustrates that

the algorithm did not spend much time testing a large number of layers (which require

longer times per forward call), suggesting a computational e�ciency advantage to using

the RJ-MCMC sampler over alternative approaches using a large number of fixed layer

interfaces. In fact, one suggested approach when using this algorithm is to first look

at the ensemble of all inverted models to identify the most probable number of layer

interfaces, and then to examine the PDFs for the subset of models with that number of

layers.

Fig. 2.5 shows that when we subset the posterior ensemble to display only mod-

els which require 2 interfaces (i.e. 3 layers) to fit the data, which of course is the true

number of interfaces in the synthetic model, we get very tight constraints on the ensuing

distributions for the radial inline electric field data. This agrees with a previous study-

ing showing a tight region of low misfit in the two parameter model space of reservoir

resistivity and thickness (Key, 2012b). In an exploration scenario, the ‘data mining’

or post-processing of the trans-dimensional inversion results opens up the possibility of

incorporating more information as and when it becomes available during the interpre-

tation phase, in order to obtain more certainty in the inverted results without having

to perform any further inversion – as the full posterior model solution only needs to be

subsetted for this kind of exploration of model space. This ability is further explored in

our application to real data, as described in the next section.

2.3.2 Application to data from the Pluto gas field, Northwest Shelf of

Australia

In this section, we apply the trans-dimensional inversion to real CSEM survey

data collected over the Pluto gas field on the Northwest Shelf of Australia as part of a

commercial survey in early 2007. A previous analysis of this single site of CSEM data

was presented in the context of solving for unknown receiver orientations in Key and

Lockwood (2010). Pluto together with the close by Xena field comprise a 5 TCF gas

accumulation (Tilbury et al., 2009). The discovery well Pluto-1 found a gas column of 209

m gross thickness approximately 3100 m below sea level in a sandy tilted Triassic fault
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Figure 2.5: Subset of the posterior ensemble for the E
r

synthetic data inversion where
the number of interfaces is equal to the true value of 2. The 5% and 95% quantiles are
far tighter than for the full ensemble shown in Fig. 2.3.

block, with an average net porosity of 28% with gas saturations in the main reservoir of

around 93%. Radial inline electric field data collected at 0.24 and 0.4 Hz for a single site

were inverted using the trans-dimensional RJ-MCMC method described in this paper.

The trans-dimensional inversion results for the resistivity PDFs and the number

of interfaces required are shown in Figs. 2.6 and 2.7, respectively. The horizontal and

vertical resistivity as a function of depth shows little evidence of anisotropy from the

seafloor down to 2000 m, with the most probable resistivity value being 0.5 ohm-m.

However, the 5% and 95% quantile lines on the horizontal resistivity are larger than

the very narrow PDFs of the vertical resistivity in this depth interval. The interface

probability as a function of depth (third column in Figs. 2.6) suggests a large probability

of an interface at 2150 m, followed by another peak at 2950 m. The vertical resistivity

jumps to a most probable value around 10 ohm-m accompanied by an increase in the

95% quantile on resistivities at depth. This is very similar to what we observed in our

synthetic studies on E
r

, as can be seen by comparing Fig. 2.3 with Fig. 2.6. Further,

at depths beyond 2000 m the horizontal resistivity PDFs are very di↵use, again similar

to what was seen in the synthetic studies in resistive layers. However, as there seem to

multiple resistive targets at depths beyond 2000 m, the PDFs do not show a narrowing

again as they they did for the single resistive layer synthetic data, but instead are more
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Figure 2.6: Results of the trans-dimensional inversion of the Pluto inline radial electric
field data for a single receiver. Interfaces with high resistivity contrast are indicated
and marked with red horizontal lines at 2150 m and 2950 m depth (right pane), with
the values of most probable vertical resistivity at these depths being 10 ohm-m (middle
pane). Note the similarities with the synthetic studies of E

r

on encountering a resistor
at depth – the horizontal resistivity PDFs become di↵use (left pane) but there is a
pronounced peak in the vertical resistivity PDFs.

di↵use indicating that resolution decreases with depth, as expected for CSEM on the

conductive sediments of the continental shelves. The most probable number of interfaces,

from Fig. 2.7 is 3.

The data fit for 50 randomly sampled models (out of a total of 94,450) in the

final posterior model distribution is shown in Fig. 2.8, along with the corresponding

models. The scatter in the resistivity models mirrors the probabilities shown in the PDF

plots of Figs. 2.6, where the vertical resistivity at 1-2 km depth has the least scatter, in

association with its tightest probabilities. Conversely, the horizontal resistivity at these

depths can be seen to be less well resolved.

In Fig. 2.9, a number of di↵erent scenarios have been subsetted (rows b-d) from

the full posterior model distribution (row a). The inline radial electric field has been

previously inverted using the Occam method to generate a smooth isotropic 1-D model

(Key and Lockwood, 2010); this result is shown as the red line in Fig. 2.9. The Occam

inversion model exhibits a smooth resistivity peak in the vicinity of the highest resis-

tivities observed in the Pluto-1 well log. It appears that the highest probability of an
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Figure 2.7: PDF of the number of interfaces required to fit the Pluto data. The most
probable number of interfaces is 3.
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Figure 2.8: A randomly chosen set of 50 models (left) fitting to RMS 1 from the full
posterior model distribution and their data fits (right). Note how similar the sampled
models when plotted together begin to look like the PDFs of resistivity shown in Fig. 2.6.
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interface in the full posterior solution shown in Fig. 2.9a is shallower at close to 2150 m

depth. There is another interface probability peak close to 2950 m, although it is of a

lower probability. This does not imply that there needs to be interfaces exclusively at

one depth or the other, as we shall show with the following analysis.

Following the same methodology as introduced for the synthetic studies, we look

at the posterior distribution of the number of interfaces, and pick out the most probable

number, 3. If we only look at this subset of models with exactly 3 interfaces (wherever

they may be) from the final posterior solution ensemble, we obtain the scenario in (b).

With this subset the 5% and 95% quantiles become closer in the resistivity PDFs and

the probability of an interface near 2150 m depth is now accentuated. 14% of the 94,450

models in the full posterior correspond to this scenario. In (c), we only look at the

subset of models from the full posterior ensemble that require interfaces between the

depth range 2000 m to 2450 m. 77% of the models in the full posterior correspond to

this scenario. Notice how all these models, which require there to be interfaces between

2000 m to 2450 m, also require a high probability of there being interfaces between 2450

m to 3300 m. Finally, we could choose to incorporate our knowledge of the nearby well-

log which says there is an interface at 3000 m. Or we could also look at it as if we were

examining the probability of there being models which require interfaces between 2450

m to 3300 m and what features that would require in the rest of the model. Subsetting

such models, which require interfaces between 2450 m to 3300 m, gives us scenario (d),

corresponding to 67% of the models in the full posterior ensemble. Notice how there is

still a high probability of interfaces at shallower depths between 2000 m to 2450 m for

all these models. Given that 96% of models require interfaces between 2000 m to 3300

m, one can calculate the probability on the number of models that require interfaces to

be present in both intervals = (77% + 67%) - 96% = 48%, also borne out by subsetting

the full model posterior. Thus 48% of models in the final posterior solution ensemble

require there to be interfaces in both intervals, as we set out to demonstrate.

To further illustrate the high-probability scenario (d) shown in Fig. 2.9, we zoom

in to the depths of interest as shown in Fig. 2.10, where hotter colours correspond to

higher probabilities. The Pluto-1 resistivity well log has also been included in the middle

pane, and both resistivity panes show the smooth isotropic inversion result from Key



66

Figure 2.9: Di↵erent scenarios mined from the full posterior ensemble. a) The full
posterior solution and accompanying PDFs. b) Subset of solutions where the number
of interfaces is 3 (the most probable number). c) Subset of solutions which require
interfaces between 2000 to 2450 metres, shown by red horizontal lines. d) Subset of
solutions which require interfaces between 2450 to 3300 metres, shown by red horizontal
lines. The fraction of models associated with each scenario out of the full posterior are
given as percentages in the last column.
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and Lockwood (2010). It is encouraging to see that the peak resistivity in the smooth

inversion coincides with the high probability value of about 10 ohm-m at around 2950

m depth, as is also suggested by the well log. However, it is rather intriguing that there

is a greater probability for another interface near the shallower depth of 2100 m. Given

that the isotropic smooth inversion (Key and Lockwood, 2010) was regularized with a

penalty on model roughness, it is not surprising that this interface was not found given

that it would be di�cult for such an inversion to resolve a sharp jump in resistivity at

depth and the possibility of two or more closely spaced resistive layers.

An explanation may be that the high vertical resistivity at these shallower depths

is caused by the presence of regionally extensive shales above the Pluto gas field (Tilbury

et al., 2009). Shales can exhibit a large vertical resistivity and small horizontal resistivity

due to microscopic grain layering and macro scale layer interbedding; since such shales

could potentially mask or be mistaken for a resistive hydrocarbon layer, the identification

of anisotropic shales is of considerable concern for CSEM exploration (e.g., Brown et al.,

2012). One cannot also discount the possibilities of there being a multi-level reservoir

or the reservoir top being shallower in the survey area than in Pluto-1. Lastly, this

feature could also be the e↵ect of 2-D or 3-D geology, but these possibilities need to

be fully modelled by 2-D or 3-D forward solvers to see if the feature is still retained

in the resulting posterior distributions. Here our interpretation is limited by having

only a single site of relatively noisy data (compared to data from more recent industry

surveys). Bayesian analysis of data from additional CSEM receivers located both on

and o↵ the Pluto reservoir, along with integration of the stratigraphy determined from

seismic imaging and petrophysical analyses from the many nearby wells, would almost

certainly shed more light on the nature of the shallower resistive interface detected here.

2.4 Conclusions

In this study we have developed a Bayesian approach for the inversion of CSEM

data. We used this approach to quantify the resolvability of anisotropic conductivity

for a 1D model representative of an o↵shore hydrocarbon reservoir, and to quantify

the resolution of marine CSEM data collected at the Pluto gas field o↵shore Northwest
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Figure 2.10: Close up view of scenario d) from Fig. 2.9 which requires there to be
interfaces between 2450 m to 3300 m. In the middle pane, the Pluto-1 well log is shown
as the thin blue line. The smooth inversion result from Key and Lockwood (2010) is
shown as the thin white line. Hotter colours in the resistivity PDFs represent higher
probabilities. Note how the probability of interfaces at shallower depths around 2150 m
still remains. The probability of this scenario is 67%.

Australia.

Our work with synthetic models show that anisotropy can indeed be well resolved

in the shallower sediments, at least when the ratio of vertical to horizontal resistivities is

near 4:1. Highly resistive isotropic reservoir layers seem to be characterized by very wide

distributions with only the peak in the distribution of vertical resistivities at reservoir

depth being trustworthy. All field components from the horizontal electric dipole except

H
z

show a similar resolution of the reservoir vertical resistivity, whereas H
z

is completely

insensitive to the reservoir. The radial inline electric field E
r

seems best at constraining

the shallow anisotropy while the vertical electric field E
z

seems best at resolving both the

reservoir top and bottom depths (Fig. 2.3). Given that both these field components can

be acquired with standard inline geometry, it augurs that with relatively straightforward

survey designs over a 1-D target, anisotropy and the reservoir can be resolved if the

target geology is not significantly di↵erent from what has been studied here.

Our approach to data inversion uses a Bayesian framework and a ‘birth-death’

RJ-MCMC sampler which has not been used for inverting marine CSEM data yet. The

algorithm is trans-dimensional in that the number of model parameters is not fixed a
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priori. Further, the algorithm is self-parametrizing in that the interfaces in a particular

model are not fixed to be at a specific location and can move. We di↵er from other

trans-dimensional RJ-MCMC algorithms in mixing a global and local ‘update’ move for

fixed dimension steps instead of using more computationally intensive approaches such as

delayed rejection. The algorithm is highly flexible and this method of Bayesian inversion

is the most truly ‘data driven’ approach that the authors have yet converged upon.

A further improvement in this direction would be adding the data noise parameters

themselves as unknowns (Bodin et al., 2012), which would tackle the crucial issue of

estimating data noise, which directly a↵ect the misfit function and thus the posterior

solution converged upon.

The full posterior ensemble can be subsetted to display model distributions cor-

responding to a most probable parameter such as the number of interfaces (Bodin et al.,

2012), to incorporate new information as and when it may become available, or, for

hypothesis testing of di↵erent plausible geological scenarios. Subsetting is rather easily

carried out and does not require additional inversion. Further, di↵erent scenarios can be

quantitatively compared by the fraction of models required in each scenario out of the

total number of models in the full posterior distribution of models.

Application of the trans-dimensional inversion to marine CSEM data from the

Pluto field are in general agreement with previous results obtained with smooth inver-

sion. The di↵erences, where they exist, highlight the fact that smooth models which

are subjectively regularized in order to obtain a stable and meaningful result out of the

many highly oscillatory ones that all fit the data (Fig. 2.8) – may miss features that are

not smooth variations in resistivity, but nonetheless are likely geological features from a

data misfit point of view.

Despite its numerous advantages, an obvious drawback to using this method is

the fact that a large number of forward calls need to be made to sample the posterior

model distribution adequately. For 1-D earth models, the problem is tractable in that

reasonable estimates of the posterior solution can be found within a couple of hours when

running on parallel computer systems. The rate limiting step is essentially how long it

takes to achieve burn-in for each chain. For Pluto, we ran 128 chains in parallel over

12 hours and oversampled the distribution by at least a factor of two. Post burn-in, if
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enough chains are run in parallel, the number of further steps required can be reduced if

the number of parallel chains is increased. For 2-D or 3-D geology, evaluating a forward

model response can take considerably longer and the millions of forward calls may take

inordinate amounts of time when done serially. However, given that parallel 2-D and 3-D

forward solvers for EM geophysics problems are becoming increasingly more e�cient and

that independent Markov chains are highly suited to being run in parallel, this bodes

well for the future of this flexible Bayesian approach to inverse problem solving.
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Andriéu, C., de Freitas, N., Doucet, A., and Jordan, M. I., 2003: An introduction
to mcmc for machine learning. Machine Learning, 50, 5–43. ISSN 0885-6125.
10.1023/A:1020281327116.

Backus, G. E., 1988: Bayesian inference in geomagnetism. Geophysical Journal, 92(1),
125–142. ISSN 1365-246X. doi:10.1111/j.1365-246X.1988.tb01127.x.

Bayes, T., 1763: An essay towards solving a problem in the doctrine of chances. Philo-

sophical Transactions of the Royal Society of London, 53, 370–418.

Bodin, T., and Sambridge, M., 2009: Seismic tomography with the reversible jump
algorithm. Geophysical Journal International, 178(3), 1411–1436. ISSN 1365-246X.
doi:10.1111/j.1365-246X.2009.04226.x.

Bodin, T., Sambridge, M., Tkalcic, H., Arroucau, P., Gallagher, K., and Rawlinson, N.,
2012: Transdimensional inversion of receiver functions and surface wave dispersion.
Journal of Geophysical Research, 117(B02031), 1–24.

Brown, V., Hoversten, M., Key, K., and Chen, J., 2012: Resolution of reservoir scale
electrical anisotropy from marine csem data. Geophysics, 77(2), E147–E158. doi:
10.1190/geo2011-0159.1.

Buland, A., and Kolbjornsen, O., 2012: Bayesian inversion of CSEM and magnetotelluric
data. Geophysics, 77(1), E33–E42.

Chen, J., Hoversten, G. M., Vasco, D., Rubin, Y., and Hou, Z., 2007: A Bayesian model
for gas saturation estimation using marine seismic AVA and CSEM data. Geophysics,
72(2), WA85–WA95.

71



72

Chew, W., 1995: Waves and field in inhomogeneous media. Wiley-IEEE Press.

Chib, S., and Greenberg, E., 1995: Understanding the metropolis-hastings algorithm.
The American Statistician, 49(4), pp. 327–335. ISSN 00031305.

Collins, M. D., and Fishman, L., 1995: E�cient navigation of parameter landscapes.
Acoustical Society of America Journal, 98, 1637–1644. doi:10.1121/1.413430.

Constable, S., 2010: Ten years of marine CSEM for hydrocarbon exploration. Geophysics,
75(5), 75A67–75A81.

Constable, S. C., Parker, R. L., and Constable, C. G., 1987: Occam’s inversion - A
practical algorithm for generating smooth models from electromagnetic sounding data.
Geophysics, 52(03), 289–300.

Constable, S. C., and Weiss, C. J., 2006: Mapping thin resistors and hydrocarbons with
marine EM methods: Insights from 1D modeling. Geophysics, 71(2), G43–G51.

Dettmer, J., Dosso, S., and Holland, C., 2010: Trans-dimensional geoacoustic inversion.
Journal of the Acoustical Society of America, 128, 3393–3405.

Dosso, S. E., and Dettmer, J., 2011: Bayesian matched-field geoacoustic inversion. In-

verse Problems, 27(5), 055009.

Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M. C., MacGregor, L. M., and Consta-
ble, S., 2002: Remote sensing of hydrocarbon layers by seabed logging (SBL): Results
from a cruise o↵shore Angola. The Leading Edge, 21, 972–982.

Green, P., 1995: Reversible jump MCMC and Bayesian model selection. Biometrika, 82,
711–732.

Gunning, J., Glinsky, M. E., and Hedditch, J., 2010: Resolution and uncertainty in 1D
CSEM inversion: A Bayesian approach and open-source implementation. Geophysics,
75(6), F151–F171.

Hastings, W. K., 1970: Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1), 97–109. doi:10.1093/biomet/57.1.97.

Hou, Z., Rubin, Y., Hoversten, G. M., Vasco, D., and Chen, J., 2006: Reservoir-
parameter identification using minimum relative entropy-based Bayesian inversion of
seismic AVA and marine CSEM data. Geophysics, 71(6), O77–O88.

Huelsenbeck, J. P., Larget, B., and Alfaro, M. E., 2004: Bayesian phylogenetic model
selection using reversible jump Markov chain Monte Carlo. Molecular Biology and

Evolution, 21(6), 1123–1133.



73

Key, K., 2009: 1D inversion of multicomponent, multifrequency marine CSEM data:
Methodology and synthetic studies for resolving thin resistive layers. Geophysics,
74(2), F9–F20.

Key, K., 2012a: Is the fast Hankel transform faster than quadrature? Geophysics, 77(3),
F21–F30. doi:10.1190/geo2011-0237.1.

Key, K., 2012b: Marine electromagnetic studies of seafloor resources and tectonics. Sur-
veys In Geophysics, 33(1), 135–167.

Key, K., and Lockwood, A., 2010: Determining the orientation of marine csem re-
ceivers using orthogonal procrustes rotation analysis. Geophysics, 75(3), F63–F70.
doi:10.1190/1.3378765.

Li, Y., and Dai, S., 2011: Finite element modelling of marine controlled-source electro-
magnetic responses in two-dimensional dipping anisotropic conductivity structures.
Geophysical Journal International, 185, 622–636.

Liang, F., Liu, C., and Carrol, R. J., 2010: Advanced Markov chain Monte Carlo methods:

learning from past samples. Wiley Series in Computational Statistics. Wiley, New
York, NY.

Løseth, L. O., and Ursin, B., 2007: Electromagnetic fields in planarly layered anisotropic
media. Geophysical Journal International, 170(1), 44–80. ISSN 1365-246X. doi:
10.1111/j.1365-246X.2007.03390.x.

Malinverno, A., 2002: Parsimonious Bayesian Markov chain Monte Carlo inversion in a
nonlinear geophysical problem. Geophysical Journal International, 151, 675–688.

Minsley, B. J., 2011: A trans-dimensional Bayesian Markov chain Monte Carlo algo-
rithm for model assessment using frequency-domain electromagnetic data. Geophys-

ical Journal International, 187(1), 252–272. ISSN 1365-246X. doi:10.1111/j.1365-
246X.2011.05165.x.

Neal, R. M., 2003: Slice sampling. The Annals of Statistics, 31(3), 705–767.

Newman, G. A., and Alumbaugh, D. L., 2000: Three-dimensional magnetotelluric inver-
sion using non-linear conjugate gradients. Geophysical Journal International, 140(2),
410–424.

Ramananjaona, C., MacGregor, L., and Andréis, D., 2011: Sensitivity and inversion of
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Abstract. Bayesian methods can quantify the model uncertainty that is

inherent in inversion of highly nonlinear geophysical problems. In this approach, a

model likelihood function based on knowledge of the data noise statistics is used to

sample the posterior model distribution, which conveys information on the resolvability

of the model parameters. Since these distributions are multi-dimensional and non-linear,

we use Markov chain Monte Carlo methods for highly e�cient sampling. Because a single

Markov chain can become stuck in a local probability mode, we run various randomized

Markov chains independently. To some extent this problem can be mitigated by running
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independent Markov chains, but unless a very large number of chains are run, biased

results may be obtained. We get around these limitations by running parallel, interacting

Markov chains with ‘annealed’ or ‘tempered’ likelihoods which enable the whole system

of chains to e↵ectively escape local probability maxima. We test this approach using

a trans-dimensional algorithm, where the number of model parameters as well as the

parameters themselves are treated as unknowns during the inversion. This gives us a

measure of uncertainty that is independent of any particular parameterization. We then

subset the ensemble of inversion models to either reduce uncertainty based on a priori

constraints or to examine the probability of various geological scenarios. We demonstrate

our algorithms’s fast convergence to the posterior model distribution with a synthetic 1-D

marine controlled source electromagnetic data example. The speed up gained from this

new approach will facilitate the practical implementation of future 2-D and 3-D Bayesian

inversions, where the cost of each forward evaluation is significantly more expensive than

for the 1-D case.
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3.1 Introduction

Marine controlled source electromagnetic (CSEM) methods have been used to

image geology with highly resistive contrasts for over three decades (Young and Cox,

1981). Extensive research and commercialization of this technology over the last ten years

(Ellingsrud et al., 2002; Constable, 2010) has led to its being added to the staple suite

of seismic methods as an exploration tool. Owing to the fact that electromagnetic skin

depths are smaller in conductive media, marine geophysical EM methods almost always

operate in the lower frequency quasi-static regime. This allows for deeper penetration of

the CSEM fields into the earth, but as a consequence it is more a di↵usive process than

wave like (Loseth et al., 2006). Thus, the resolution of CSEM is never quite as good

at depth as that of the seismic method, but the value of CSEM lies in its sensitivity

to resistivity (which may be indicative of hydrocarbon saturation), and not acoustic

impedance (which may be more indicative of geological structure). Owing to this di↵usive

characteristic of marine CSEM, robust inferences made from a survey are necessarily from

inversion of the data, and not merely from examination of the data itself (Weiss, 2007).

Typically, regularized and linearized gradient based inversion methods have been used

to arrive at models that in addition to minimizing data misfit are ‘optimal’ in some

user-defined sense. By means of regularization, highly oscillatory features in the model

that are thought to be outside the resolution of CSEM are eliminated (e.g., Constable

et al., 1987; Newman and Alumbaugh, 2000; Abubakar et al., 2008; Key, 2009; Sasaki,

2013). Though these methods are highly e�cient and well understood, they provide

only a single smooth model as a result, or a suite of smooth models. These models

provide a limited insight into the various classes of models that are compatible with the

observed data given the noise. A clear understanding of the resolvability of various parts

of the modelspace does not emerge from a linearized treatment of the non-linear CSEM

problem.

To quantify the uncertainty inherent in the inversion of CSEM data, one can

utilize a Bayesian framework where all information is stored in probability distribution

functions or PDFs. Since Bayesian probability (Bayes and Price, 1763) is a measure of

information (Scales and Sneider, 1997) and since it is the aim of geophysical inversion

to provide information about the earth’s subsurface, it is natural to postulate geophysi-
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cal inverse problems in a Bayesian framework (Tarantola and Valette, 1982). In such a

framework, model parameters are treated as random variables, and their fit to the ob-

served data given the observed statistical noise allow one to formulate a model likelihood.

To make the connection with deterministic inversion methods, to first order, models with

low misfit possess a higher likelihood. After incorporating prior knowledge of the models

independent of the data, the product of the prior model probability and the likelihood is

known as the posterior model probability. Those parts of the model space that are more

frequently required by the data than other parts manifest with greater posterior proba-

bility, and hence are better resolved (Backus, 1988). However, fixing a particular model

parameterization (e.g., fixing the number of layers, their thickness and locations) for the

inversion is known to produce posterior distributions, only for the given parametrization

(Dettmer et al., 2010). This is where the ‘trans-dimensional’ (Bodin and Sambridge,

2009) or ‘reversible jump’ (Green, 1995) Markov Chain Monte Carlo (RJ-MCMC) dif-

fers from traditional MCMC methods, in sampling from a posterior distribution where

the number of unknowns and their positions, are also treated as part of the inverse prob-

lem (Agostinetti and Malinverno, 2010). Such algorithms have a ‘parsimony’ property

(Malinverno, 2002), which refers to the fact that Bayes’ Theorem deems models that

explain the data with simpler parameterizations more probable. MacKay (2003) dis-

cusses this aspect of Bayes’ Theorem in some detail. A good introduction to geophysical

trans-dimensional Bayesian inversion can be found in Sambridge et al. (2013).

Parallel tempering is an accelerated MCMC technique sometimes known as

‘replica exchange’ (Earl and Deem, 2005; Geyer, 1991; Swendsen and Wang, 1987).

Using a sequence of parallel, interacting MCMC chains with ‘annealed’ or ‘tempered’

likelihoods allows the entire system of chains to e↵ectively sample the model space with-

out getting trapped in local modes of posterior probability. Recent examples of parallel

tempering as applied to geophysical inversion can be found in Dosso et al. (2012), who

use the method to discover multiple modes in the posterior model distribution while

inverting underwater acoustic reverberation data and in Dettmer and Dosso (2012),

who use underwater acoustic data to invert for seafloor sediment properties.

Bayesian uncertainty estimation for the CSEM problem has indeed been carried

out in the past (e.g., Chen et al., 2007; Trainor-Guitton and Hoversten, 2011; Buland and
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Kolbjornsen, 2012). However, these methods considered the model parameterization to

be fixed and did not address the model space at di↵erent scales. Tompkins et al. (2011)

consider a scheme which does indeed address the issue of model parameterization at

di↵erent scales, but their method is not Bayesian and requires the use of a starting model

that fits the data well and the resulting uncertainty retains some of the characteristics

of this model. Gunning et al. (2010) use a ‘Bayesianized’ hierarchical bootstrapping

method to address the issue of model resolvability and escape from local probability

maxima.

The advantage in using a trans-dimensional approach (Bodin and Sambridge,

2009) is that both the theoretical framework and the practical implementation of it are

straightforward - as explicitly shown in Ray and Key (2012), nothing more than a lit-

eral interpretation of Bayes’ Theorem (Bayes and Price, 1763) and the generation of

random numbers is required to explore a realistic posterior model distribution. Recent

applications of the trans-dimensional method to solve geophysical EM methods can be

found in Minsley (2011), Brodie and Sambridge (2012), who applied it the airborne EM

problem, and in Ray and Key (2012), who tackle the marine CSEM problem. In this

paper, we extend the application of RJ-MCMC to CSEM by introducing parallel temper-

ing, to hasten convergence of the RJ-MCMC chains and quickly escape local probability

maxima. By using parallel tempering, we show that previously undetected modes in

the posterior model distributions for CSEM data have come to light, and that the to-

tal number of forward solves is reduced to less than half the number required without

using it. This is significant as a realistic uncertainty appraisal for 2D CSEM data will

require fast, e�cient and accurate sampling, as 2D or 3D EM problems are computation-

ally far more expensive with complicated interactions between model parameters. We

demonstrate our concept using synthetic 1-D data, and add reversible jump MCMC and

parallel tempering to an arsenal of tools for tackling 2D or 3D problems in the future.

Lastly, we use the reversible jump or trans-dimensional method to provide a workflow for

testing geological hypotheses by subsetting the posterior distribution of inverted models

by interrogating it with intelligent queries, without requiring further inversion. We see

this as being particularly useful in exploration scenarios where new information keeps

coming in over time, which can be used to hone the posterior model distribution without
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re-inverting the acquired data.

Theory

3.1.1 Bayesian inversion, Markov chains and the reversible jump

Bayesian information is contained in probability density functions (PDFs) rep-

resented by p(·). Using Bayes’ theorem, (Bayes and Price, 1763) we write

p(m|d) = p(d|m)⇥ p(m)

p(d)
(3.1)

posterior =
likelihood⇥ prior assumptions

evidence
(3.2)

For Bayesian geophysical inversion, the data vector d is a constant. All PDFs

with a model dependence are functions of the random variable m. The term p(d|m) can

then be interpreted as the model likelihood, the functional form of which depends on

the statistics of the noise distribution, and the value of which depends on the model m

being sampled and its misfit. For Gaussian noise, the model likelihood is given as:

p(d|m) / exp

 
� [d� f(m)]TCd

�1[d� f(m)]

2

!
(3.3)

Here f(m) corresponds to the modeled data and C

�1

d

is the data covariance matrix and

[d�f(m)]TCd
�1[d�f(m)] is the �2 misfit for the evaluated model m. The prior model

distribution p(m) represents our state of knowledge independent of the survey data.

The evidence term p(d) corresponds to a constant PDF normalizing factor equal to the

integral over all models of the numerator in equation 3.1. Though the evidence can help

in ‘model selection,’ i.e., decide which model parameterization is more probable than the

other, it is very challenging to compute as it requires evaluation of a multi-dimensional

integral over di↵erent models, evaluated for di↵erent model parameterizations. Another

means of performing model selection is to calculate the full posterior model probability

distribution p(m|d) by allowing the problem to be trans-dimensional (Dettmer et al.,

2010), i.e., have a varying number of model parameters. This is the RJ-MCMC approach

that we have used in this paper, which is di↵erent from the usual MCMC approach in
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the following manner. Treating the evidence as a proportionality constant, it follows

from equation 3.1 that

p(m|d) / p(d|m)⇥ p(m) (3.4)

p(m|d) / p(d|m)⇥ p(mk|k)⇥ p(k) (3.5)

What we have e↵ectively done, is not claimed to have known the optimal model param-

terization a priori in equation 3.4. We have not fixed the prior model probability to

be a constant over all models, which fixed dimensional MCMC samplers do. We do

not regularize our inversion, as we do not know what an optimal regularization which

preserves resolution yet removes spurious oscillatory behavior is. Similarly we simply

do not know how many layers to represent the earth with, or what their locations are

(Bodin and Sambridge, 2009). For a given model m, we split p(m) into 2 parts. One

part contains information about the number of interfaces k in the model, p(k). The other

part p(mk|k) contains information about where these interfaces are in depth, and what

the resistivities in between these layers, the top and the bottom halfspace are, given the

number of interfaces k. Our task, is to evaluate uncertainty in the models inverted from

the observed data. To this end we must arrive at the posterior distribution of models,

most of which fit the data well, by evaluating their misfit and sampling models according

to equation 3.5. However, it is nearly impossible to exhaustively sample the model space

for more than a few parameters owing to the ‘curse of dimensionality,’ hence we resort

to probing this highly non-linear distribution using various Markov chain Monte Carlo

methods (e.g., Liang et al., 2010) and focus on the RJ-MCMC or trans-dimensional

method (Sambridge et al., 2013) in this work.

3.1.2 Metropolis-Hastings MCMC and the acceptance probability

The RJ-MCMC sampler is a particular type of Metropolis-Hastings (MH) sam-

pler (e.g., Hastings, 1970; Liang et al., 2010). A MCMC sampler like the MH algorithm

converges upon the posterior distribution using an acceptance probability ↵. At every

step of the Markov Chain, a candidate model is sampled by perturbing the current model

using a known probability distribution (the proposal distribution q) and the acceptance
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↵ is calculated. The proposal distribution q is usually a simple distribution which should

be easy to draw samples from (such as a Gaussian), and also be scaled somewhat like the

posterior distribution we are sampling (Ray and Key, 2012). A random number r is then

drawn uniformly from the interval [0,1]. If r < ↵ the proposed perturbation is accepted,

else the old model is retained. The rationale behind this algorithm can be explained by

examining in more detail the expression for ↵ (Bodin and Sambridge, 2009), where

↵(m0|m) = min

"
1,

p(m0)

p(m)
⇥ p(d|m0)

p(d|m)
⇥ q(m|m0)

q(m0|m)
⇥ |J|

#
. (3.6)

Here m

0 is the new proposed model and m is the old model. Specifically, p(m0
)

p(m)

is the prior ratio, p(d|m0
)

p(d|m)

is the likelihood ratio and q(m|m0
)

q(m0|m)

is the proposal ratio. The

Jacobian term |J| is not to be confused with the model Jacobian needed for gradient

based inversions (e.g., Constable et al., 1987), but is a matrix that incorporates changes

in model dimension when moving from m to m

0. For a fixed number of dimensions in a

classic MH algorithm, the prior ratio (for uniform priors), proposal ratio (for symmetric

proposals), and Jacobian term are all 1 (Dettmer et al., 2010). Hence the algorithm

always moves towards areas of higher posterior probability if the data misfit improves

(likelihood ratio > 1). However, it can also move to areas of lower posterior probability

with a probability ↵ if the misfit does not improve (likelihood ratio < 1). This is

essentially how MCMC samplers give us ‘regional’ as opposed to ‘point’ information

about models that fit the data well, unlike gradient based optimizers. Extensive details

on the trans-dimensional RJ-MCMC prior and proposal ratios can be found in Ray and

Key (2012), Bodin and Sambridge (2009) or Dettmer et al. (2010).

To be able to compare likelihoods between models with di↵erent numbers of

parameters (i.e., with di↵erent dimensions), the Jacobian in the acceptance term in

equation 3.6 needs to be evaluated. There are various implementations of RJ-MCMC,

and in all the examples cited so far, a ‘birth-death’ scheme has been used. As shown

in Bodin and Sambridge (2009) for the ‘birth-death’ RJ-MCMC scheme, this Jacobian

term is unity. We have adopted the ‘birth-death’ algorithm in this paper and shall not

concern ourselves with this Jacobian term any further.

As to why the algorithm should not always look to improve the data fit by simply

increasing the number of parameters (interfaces in the seabed), if we examine equation



83

3.6 we find that even if the likelihood ratio times the proposal ratio is greater than one

for a proposed move that inserts a new interface into the model, the prior ratio will be

less than one owing to the fact that the new prior PDF p(m0) needs to integrate over a

larger number of parameters to equal 1. Hence, there is an opposition to the ‘birth’ of a

new layer (which may lead to improvement of data fit) by the prior ratio.

3.1.3 Parallel tempering

If one were to examine the likelihood function for Gaussian noise in equation 3.3,

it is apparent that the ‘peakiness’ of the likelihood function can be manipulated if one

were to introduce a term that plays the statistical mechanics analogue of temperature

in a partition function (Earl and Deem, 2005). Detailed balance is an aspect of MCMC

which enables unbiased sampling, allowing samples to be distributed in proportion to the

target posterior PDF. If we can ‘anneal’ or ‘temper’ the likelihood, without violating the

detailed balance (Earl and Deem, 2005), then local probability maxima in the posterior

can be overcome. That is, if we were to say that our annealed likelihood should be

p(d|m) / exp

 
� [d� f(m)]TCd

�1[d� f(m)]

2T
j

!
(3.7)

instead of the untempered version with T
j

= 1, we would be sampling from a smoother

likelihood with less extreme peaks and valleys than the target untempered likelihood.

The first examples of accomplishing this without violating detailed balance can be found

in Swendsen and Wang (1987) and in its more familiar form as a MCMC sampling

algorithm in Geyer (1991). The basic idea is to run N parallel Markov chains in concert,

with the jth chain at temperature T
j

, with T
1

= 1 and T
j

> 1; 8j > 1. Temperatures

are usually arranged in ascending order, with Markov chains at adjacent temperatures

being allowed to exchange their states (models) with a fixed probability or over a fixed

number of steps. At the end of this joint simulation of N Markov chains, the target

chain at T
1

= 1 is used for posterior inference. An e↵ective implementation is to have

a temperature ladder of increasing temperatures, as demonstrated in Figure 3.1. This

figure describes how the likelihood function can be annealed as a consequence of using

equation 3.7. Note how the likelihoods corresponding to higher temperature chains
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Figure 3.1: Annealed or tempered likelihood functions as a function of their �2 misfit.
Note how the leftmost likelihood function at T = 1 is narrow and peaked, which can
manifest as a model space which is harder to sample.

sample higher values of �2 misfit over a broader range of probable likelihoods. Thus,

these chains are never stuck in local probability maxima. Owing to their overlap with

the narrower lower temperature chains, exchange of states (models) for adjacent chains

is possible using the following MH acceptance criterion:

↵
swap

=
p
hot

(d|m
cold

)

p
hot

(d|m
hot

)
⇥ p

cold

(d|m
hot

)

p
cold

(d|m
cold

)
(3.8)

It is important to ensure while using equation 3.8, that the probability of selecting

all pairs of temperatures is equal, and that the pairs are chosen at random in order to

maintain detailed balance (Dettmer and Dosso, 2012). Further, to ensure that one has

configured a reasonable temperature ladder, accepted exchange rates between adjacent

temperatures should be close to 25% (Dosso et al., 2012). The highest temperature

should be high enough to allow the chain to escape local probability maxima, yet not

so high for there to be no significant overlap between adjacent chains, which will make

exchanges of information improbable. For a given model space, adding more chains to

the configuration once an optimal exchange acceptance rate is found does not improve

chain mixing. A detailed discussion on setting the temperature ladder can be found in
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Earl and Deem (2005).

The main motivation for using parallel tempering is that it is very e�cient at es-

caping local probability modes (misfit minima) and the communication between adjacent

chains significantly speeds up convergence to the posterior solution. This is an important

factor in ultimately carrying out 2D inversion of CSEM data, where the computational

complexity in forward model evaluation is far greater. One can escape local posterior

probability modes by running lots of independent chains at the target temperature (Ray

and Key, 2012; Bodin et al., 2012; Dettmer et al., 2010), but for a 2D problem where

the evaluation of any one forward model itself can at present take up the resources of a

cluster of computers, it is important to keep the number of parallel chains small. Par-

allel tempering achieves just this, bringing down the total number of evaluations as the

number of communicating parallel chains required is small, a fact we demonstrate in this

paper.

3.2 Synthetic inversion tests

As a test model for the algorithm, we use a 1-D model already studied by Trainor

and Hoversten (2009) and Tompkins et al. (2011). The model, as well as its phase and

amplitude response are shown in Figure 3.2. This model was chosen for study by Trainor

and Hoversten (2009) owing to a frustrating lack of well defined convergence to a posterior

distribution. 2% Gaussian noise was added to the modeled data, and a standard source

normalized amplitude of 10�15 V/Am2 was used as the noise floor.

3.2.1 Interface depths exactly fixed

In the first suite of tests, using the guidelines mentioned for temperature selection,

we applied parallel tempering using 4 chains at temperatures T = [1.00, 1.35, 1.84, 2.50].

Note that the temperatures are equally spaced in the log domain (Dettmer and Dosso,

2012). We used an ordinary MH algorithm without the reversible jump for our initial

studies. Using 30,000 samples per chain, with swaps attempted at every step, dismissing

the first 3,000 as the ‘burn-in’ samples (low probability, high misfit region of model

space), the results from the target chain at T = 1 are shown in Figure 3.3a, with the
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Figure 3.2: Synthetic 1-D model (red) used for this study. Alternating, moderately
resistive then conductive sediments are terminated by a highly resistive basement at
depth. The CSEM amplitude and phase responses at the seafloor receivers are plotted
with range at 3 frequencies. The background responses in the absence of the middle
layer (black model) are shown with dashed grey lines.

truth being shown in each layer by a red vertical line at the correct resistivity value. The

vertical axis for all plots corresponds to probability of resistivity in the given layer. The

displayed marginal probabilities are simply obtained by binning the sampled posterior

model resistivities at each depth. The same histograms for each layer, translated into

depth and the log
10

-resistivity domain are displayed as an image in Figure 3.3b. Hotter

colors represent higher probability, and cooler colors correspond to lower probability.

The plots look far more natural in the log domain, which is more representative of

subsurface resistivity than its linear counterpart. The true model is shown with a dotted

yellow-black 1-D model. Though we have exactly fixed the model interfaces to be at

the true layer depths, we get a somewhat surprising result. In addition to the probable

layer resistivities being clustered near the truth (as we expected), in layers 3 and 4,

we get log
10

resistivities clustered around 0.05 and 0.32 that are less probable than the

maximum probable in the layer, but are not negligible (which we did not expect). They

have a slightly higher misfit and as expected from the likelihood formulation 3.3, a lower

probability. However, they represent models that are within the data error. Root mean
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square (RMS) misfit values are obtained by dividing the �2 misfit by the number of

data points and taking the square root. Models which belong to the ‘true’ family of

models have an RMS misfit close to 0.9, whereas those models belonging to the ‘shadow’

family of models have an RMS closer to 1.1. Further, in carrying out untempered fixed

dimensional inversions, we always chanced upon one or the other family of models. In 10

independent fixed dimensional trials, only 2 converged upon the true family. However,

from Figures 3.3a and 3.3b it is apparent that the ‘true’ family of models is more probable.

Thus we would probably have needed many more Markov chains running independently

to obtain the true posterior probabilities of the 2 classes of models compatible with the

data. In fact, though the results of Trainor and Hoversten (2009) and Tompkins et al.

(2011) are generally compatible, albeit with certain distinct di↵erences, neither of them

show any hint of the ‘shadow’ family of models in their posterior distributions. The fact

that separate modes in a di�cult probability landscape exist is not new, and is the reason

why parallel tempering is used in various sampling applications in the first place. We

verified the existence of these distinct modes by computing a 5D grid searched posterior

over the probable search ranges indicated by Figure 3.3b. Though the resulting grid was

coarse (not shown here), it required 15⇥ 15 ⇥ 30 ⇥ 30 ⇥ 20 = 4, 050, 000 evaluations to

prove the existence of separate modes. In contrast, with parallel tempering and MCMC,

we needed only 4 ⇥ 30, 000 = 120, 000 samples in total. This is a major reason why

high dimensional integrals (such as those required for marginal probability distributions)

are computed using stochastic methods instead of a brute-force approach. Geophysical

evidence of multiple modes in the model space has been amply demonstrated by Dosso

et al. (2012) for geoacoustic inversion, and by Gunning et al. (2010) for the case of

‘Bayesianized’ CSEM inversion. What is perhaps a little surprising is that as simple a

model as the one we have studied, demonstrates such non-uniqueness with exact layer

parameterization.

3.2.2 Trans-dimensional inversion with parallel tempering

Given that we don’t always know the exact layer parameterization required to

perform an inversion, we elected to perform a trans-dimensional inversion with the noisy

synthetic data. The number of interfaces is allowed to vary from 1 to 15, and the
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(a) (b)

Figure 3.3: a) Marginal resistivity distributions in each layer for a fixed dimensional
inversion. The truth is shown with a red vertical line. b) Same as a) except now higher
probabilities are shown in hotter colors, and the resistivity scale is in log

10

ohm-m. The
true model is shown with a dotted yellow-black line.
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interfaces can be placed anywhere between 1002 to 3500 meters. Models are allowed to

have any log
10

resistivities between -1 to 2.3 (0.1 to 200 linear ohm-m). In this section,

we also applied parallel tempering to the RJ-MCMC framework. A remarkable aspect of

most MCMC algorithms is their flexibility, which allowed us to run a trans-dimensional

RJ-MCMC algorithm within a parallel tempering framework with very little modification

to either set of codes.

E↵ect of di↵erent temperatures

For the RJ-MCMC application, we used 8 di↵erent temperatures at T = [1.00,

1.14, 1.30, 1.48, 1.69, 1.92, 2.19, 2.50] and swapped randomly between 2 chains at every

single step. For flexible model parameterization, 8 chains were used as opposed to the 4

used earlier for fixed dimensional MCMC. This is because we now have a di↵erent and

larger posterior model probability space to sample. The results are shown in Figure 3.4a,

where each row corresponds to the indicated temperature. The left panels show proba-

bility of resistivity at depth, and the right panels show the probability of the presence of

interfaces at depth. At each depth in the left panels, the 5% and 95% quantile lines of

resistivity have been indicated with a dashed black line, and the truth with a solid black

line. The dotted vertical line in the right panel corresponds to a uniform probability

of interfaces between 1002 to 3500 m. As shown in Figure 3.1, the hotter temperature

chains sample higher �2 misfit values. Returning to Figure 3.4a, clearly, the hotter chains

are not able to resolve well the middle log
10

resistivity of 0.69 (5 ohm-m linear), prefer-

ring to be closer to the ‘shadow’ value of log
10

resistivity of 0.05 (1.12 ohm-m linear)

with smoother posterior model ensembles. As we progress downward towards the cooler

chains, we see sensitivity to the true value of the middle layer, though it is not uniquely

resolved. This is in line with the observations of both Bodin et al. (2012) and Gunning

et al. (2010) where they explicitly state that larger data errors than actually observed in

the data will lead to less structure (smoother model ensembles) in the inferred posterior.

Since increasing the data errors for inversion is in some sense, increasing the temper-

ature in the annealed likelihood, the two statements are equivalent. Thus, the higher

temperature chains should be less sensitive to the middle layer, which is indeed what we

observe in this study.



90

(a) (b)

Figure 3.4: a) Unweighted trans-dimensional posterior probability distributions for re-
sistivity at depth (left panel) and interface probability with depth (right panel). Each
row corresponds to the indicated temperature. The 5% and 95% quantile lines of resis-
tivity at depth are shown with dashed black lines and the truth with a solid black line.
b) Samples at each temperature re-weighted to the target temperature T = 1 to remove
bias.
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Looking at the target chain at T = 1, at some depths, the truth is in fact less

probable than the ‘shadow’ value. Given the results of our fixed dimensional modeling,

this should not come as a surprise. In this light, the result is also fairly intuitive -

when we allow the layer parameterization to be variable, we are looking at a more

realistic uncertainty estimate which should clearly be less certain than if we had fixed

the interfaces to be at their true positions. Without more information, this is all the

subsurface information content that we can glean from the observed data, within the

relatively large prior bounds. In the following section, we deal with trying to reduce this

uncertainty, a posteriori.

Sample re-weighting

We can also re-weight the chains from di↵erent temperatures to obtain samples

at the target temperature of T = 1 using a weighting factor (Brooks and Neil Frazer,

2005; Dosso et al., 2012). For m

j

i

, which is the ith model in a chain at temperature T
j

with a sampled misfit �2(mj

i

), the weight is given as:
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Notice that at a higher temperature, a higher misfit implies a smaller weight.

Further, the weight for all models in a chain are the same if T
j

= 1, implying no re-

weighting. For all models in a chain at a particular temperature, the samples can be

re-weighted to the target temperature T = 1 using equation 3.9. For instance, marginal

probabilities of resistivity at depth can be found by binning the resistivity values as

before, but each histogram count needs to be multiplied by the weight corresponding to

the model being binned. The results of this operation are shown in Figure 3.4b, where

each row corresponds to the re-weighted samples at a given temperature. The color scales

are the same for all images in Figure 3.4a and Figure 3.4b. All re-weighted distributions

look fairly similar, but re-weighted samples from T = 2.5 have a slightly rougher posterior

distribution – borne out by a minute observation of the interface probability curve at

this temperature in Figure 3.4b and comparison with the interface probability curve

for the T = 1 case. The T = 2.5 chain has undersampled the model space to a very
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small extent, a similar observation being borne out by Dosso et al. (2012). The extent

of undersampling is problem dependent and it should not be a cause for alarm if it is

greater than shown here. This undersampling merely illustrates that there is a tradeo↵

between traversing greater distances in the model space and fine sampling of the target

areas. Since parallel tempering allows for the trickling down of information at higher

temperatures to lower temperatures, the lower temperature chains will have sampled the

model space adequately.

Posterior on the number of interfaces

The marginal posterior distribution on the number of interfaces for the target

temperature T = 1 is shown in Figure 3.5. The true number of interfaces is shown

with a red vertical line. The dashed black horizontal line corresponds to a uniform

probability on the number of interfaces. The number of interfaces is a variable that

changes from model to model and models with di↵erent numbers of interfaces can be

swapped between di↵erent chains. Since the true number of interfaces is not known by

the inversion a priori, the most probable number of interfaces is not equal to the true

value of 4 but turns out to be 8. This is not unusual and a similar phenomenon has also

been observed by Minsley (2011).

Proposal variances at di↵erent temperatures

If the posterior probability space has various di↵erent length scales associated

with multiple modes, as long as equation 3.8 has been obeyed, di↵erent proposal dis-

tribution step sizes can be assigned to each chain. For instance, we can assign larger

proposal variances to the higher temperature chains to ensure that they explore the

model space with large steps. The step size for a chain at a particular temperature

should be made smaller if the acceptance rates for that chain become very low (e.g., Ray

and Key, 2012; Bodin et al., 2012) or if the accepted swap rate between adjacent chains

falls far below 25%.
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Figure 3.5: Marginal probabilities on number of interfaces required by the observed
data at the target sampling temperature. The true number, 4 is marked with a vertical
red line. The dashed black horizontal line corresponds to a uniform probability on the
number of interfaces.

3.2.3 Convergence to the posterior

A definite statement about convergence to the true posterior is di�cult to make,

and is still an area of active research, especially with RJ-MCMC where the number of pa-

rameters may change in the next step (Bodin and Sambridge, 2009). However, a method

that works well is to keep sampling until it is apparent that the posterior distribution

does not change appreciably by adding more samples (Dettmer and Dosso, 2012). For

the trans-dimensional case, with a burn-in length of 5000 samples, we oversampled by

500,000 samples in each chain in order to test for convergence and stopped sampling at

1.75 million samples per chain.

3.2.4 Comparison between ordinary and parallel tempered MCMC

As is evident from Figures 3.3a and 3.3b, parallel tempering reveals hidden

modes in the fixed-dimensional case by transitioning between them with relative ease.

Further, since this problem can be mitigated by running numerous independent, non-

communicating chains, it is only fair to compare parallel tempering with the case when
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we run various independent MCMC chains. For the trans-dimensional case, to obtain

the level of detail and convergence found in the last panel of Figure 3.4a, with parallel

tempering we ran 8 chains with 1.75 million samples in each chain. In total we utilized

14 million samples with a slightly lower number of total forward evaluations (as proposed

samples falling outside the prior bounds are not evaluated). For an equivalent level of

detail without using parallel tempering, we needed at least 56 independent RJ-MCMC

chains with 500,000 samples each, a total of 28 million samples, with a similar number

of forward evaluations. Thus we see that parallel tempering requires both less chains,

and a lower total number of forward evaluations by a factor of 2. To illustrate how much

better chain mixing is using parallel tempering, a comparison has been made between

sampled posteriors from parallel tempering and independent chains, both for 8 chains

and 500,000 samples in each chain. Figure 3.6a shows the result from all 8 independent

chains and Figure 3.6b shows the results using parallel tempering, inference made from

only the target chain at T = 1. Though neither ensemble has achieved stationarity yet,

an examination of the last panel of Figure 3.4a (which uses the same color scale) shows

that the result with parallel tempering is closer to the final posterior distribution, as is

evident in the shape of the interface probability curves and the smoothness of the 5% and

95% quantile lines of resistivity at depth. In fact, it may even appear that the interface

probability bumps in the independent chain results are closer to the truth. This is not

because they find the truth better than parallel tempering does, but merely because they

have not sampled enough of the model space in an equivalent number of samples. Very

similar behavior has been reported by Dosso et al. (2012).

3.3 Reducing uncertainty post-inversion and scenario eval-

uation

If one has used large enough prior bounds, a lot of information is contained in

PDFs pertaining to subsurface resistivity. In a typical exploration scenario, as a prospect

is being evaluated, more information such as seismic data, well information, or even ge-

ological models become available over the course of time. One can then incorporate

this information when analyzing the posterior model distribution, without performing
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Figure 3.6: a) Posterior from 8 independent, non interacting chains, 500,000 samples
in each chain. b) Posterior from parallel tempering with the same number of chains and
samples, inference using only the target chain. As evidenced by the smoother 5% and
95% quantile lines of resistivity at depth, parallel tempering estimates are closer to the
final sampled posterior.
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further inversion. When utilizing information from geological models, one is e↵ectively

examining di↵erent geological scenarios embedded in the posterior. An example appli-

cation is shown in Figures 3.7 and 3.8. In step 1, we set up reasonable uniform bounded

prior distributions (Ray and Key, 2012) for resistivity at depth (Figure 3.7, left panel),

interfaces at depth (Figure 3.7, right panel) and the number of layers required by a model

(Figure 3.8). In step 2, we introduce the data, and through the data misfit translated into

a likelihood, we sample the product of likelihood and prior, to obtain a posterior model

distribution. Posterior inference is made only from the chain at the target temperature

T = 1. Step 2 produces the marginal posterior distribution for the given prior bounds

and data errors as shown in Figures 3.7 and 3.8. Step 2 in these figures represent the

same case as Figures 3.4a and 3.5 for the target temperature T = 1. We could stop here,

if this was all we knew about the subsurface, and indeed we should if that is the case.

However, if new information from well logs or seismic imaging confirms the presence of

certain horizons in the subsurface, we could mine the posterior model distribution using

this information and go to step 3. In this step we have selected all models in the posterior

ensemble which have interfaces within ±75 m of the true location of interfaces, and the

resulting posteriors from this subset have been shown in Figures 3.7 and 3.8. Note how

the presence of a 5 layered structure is becoming quite apparent in Figure 3.7 step 3,

and the middle layer is more likely to be resistive. All rows of Figure 3.7 are normalized

to the same color scale. The last row shows the step 3 posterior overlain with examples

of sampled models similar to both the true (black) as well as ‘shadow’ (purple) family of

models, given that sampled models can have di↵erent numbers of interfaces at di↵erent

depths. The 5% and 95% quantile lines have been omitted for clarity. Note the similarity

of this last row to Figure 3.3b for the fixed dimensional case. The fixed dimensional case

shown in Figure 3.3b is a highly specific case of Figure 3.7 step 3, and MCMC samplers

are not grid searches. However, that the fixed dimensional case, which is a subset of the

full posterior should be so similar to the case shown in step 3 of Figure 3.7 is indeed

re-assuring.

This methodology can be encapsulated in the following manner: 1) Start by

setting reasonably wide bounded prior distributions. 2) Introduce the data to obtain

the full posterior. 3) Subset the data based on available information. Geological models
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can also be tested in this fashion. By subsetting parts of the model, we introduce a

conditioning on the posterior. This conditioning a↵ects other parts of the posterior

model distribution. Depending on the available knowledge about the subsurface, this

method can be used to examine di↵erent geological hypotheses. At this juncture, all

sampled likely models obey the model physics. Further, this step requires no further

inversion, but simply mining of the posterior distribution (Ray and Key, 2012). We must

caution though, that MCMC samplers are not exhaustive grid searches, so sampling for

too specific a query may turn up no results, which does not imply that these specific

cases do not exist. A corollary to post-inversion conditioning on the posterior, is that we

could use a more restrictive prior distribution to reduce the model space being searched.

However, this approach has a serious shortcoming, in that one can ‘tune’ the inversion

drastically by overspecifying the prior distribution, when in reality our prior knowledge

is limited. This can lead to serious bias in the resulting posterior distribution, as has

been demonstrated by Minsley (2011).

3.4 Conclusions

Uncertainty is an inescapable aspect of geophysical inversion. Noisy observa-

tions, incomplete data sampling, insu�cient knowledge of a suitable subsurface parame-

terization as well as model physics contribute to uncertainty and non uniqueness in the

inverted models. In this work, we have attempted to fully address these issues using

a trans-dimensional Bayesian technique. To overcome strong non-linearities in the pos-

terior model probability distributions with multiple probability maxima, we have used

parallel tempering to reliably transition between di↵erent modes. We have also demon-

strated that parallel tempering speeds up convergence to the posterior distribution by

reducing the total number of required samples to less than half of what would be re-

quired otherwise. We have attempted to use as few parallel chains as possible with as

few forward calls per chain, in order to keep the total number of forward evaluations low.

With the advent of cluster computing, computation times for accurate 2D and 3D model

responses are rapidly getting smaller. However, the process of evaluating these model

responses in themselves use up significant cluster resources, and it is not yet feasible, for
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Figure 3.7: Workflow for inversion: 1) Start with broad uniform priors. 2) Introduce
the data and obtain full posterior model distribution. 3) Subset posterior using available
knowledge of interfaces. The last row shows the step 3 posterior overlain with sampled
models that are similar to the true model (in black) and the ‘shadow’ model (in purple).
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Figure 3.8: Marginal posterior probability distributions on the number of interfaces for
the cases described in Figure 3.7.

tens of independent (non interacting) Markov chains, to assign each Markov chain its own

cluster for forward computations. This is where parallel tempering drastically reduces

the number of required chains (8 for the RJ-MCMC), yet keeps the number of forward

evaluations per chain down to about 1.25 million for convergence. Given a hypothetical

2D forward evaluation time of 1 second, 1.25 million computations will take 14.5 days.

While this may seem like a significant amount of time, investments for drill decisions

are significantly more expensive than this amount of computer time. With advances in

GPU computing and the availability of fast parallel 2.5D forward solvers (Key and Ovall,

2011), we have demonstrated that when the jump to quick, higher dimensional forward

modeling is made, parallel tempering and trans-dimensional RJ-MCMC will be valuable

tools with which to evaluate the full uncertainty associated with observed data.
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Abstract. We apply a reversible jump Markov chain Monte Carlo method to

sample the Bayesian posterior model distribution of 2D seafloor resistivity as constrained

by marine controlled source electromagnetic data. This posterior distribution of earth

models conveys information on which parts of the model space are illuminated by the

data. Whereas conventional gradient based inversion approaches require subjective reg-

ularization choices to stabilize this highly non-linear and non-unique inverse problem

and provide only a single solution with no model uncertainty information, the method

we use entirely avoids model regularization. The result of our approach is an ensemble

of models that can be visualized and queried to provide meaningful information about
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the sensitivity of the data to the subsurface, and the level of resolution of model param-

eters. We represent models in 2D using a Voronoi cell parameterization. To make the

2D problem practical we use a source-receiver common midpoint approximation with 1D

forward modelling. Our algorithm is trans-dimensional and self parameterizing where

the number of resistivity cells within a 2D depth section is variable, as are their positions

and geometries. Two synthetic studies demonstrate the algorithm’s use in the appraisal

of a thin, segmented, resistive reservoir which makes for a challenging exploration tar-

get. As a demonstration example we apply our method to survey data collected over the

Scarborough gas field on the Northwest Australian shelf.
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4.1 Introduction

The marine controlled source electromagnetic (CSEM) method is an active source

sounding method that has been in use for over three decades for the detection of geology

with high resistivity contrasts (Young and Cox, 1981; Chave and Cox, 1982). Industry

funded research and extensive commercialization of this technology over the last decade

has led to CSEM being added to the standard suite of seismic methods in an exploration

scenario (Ellingsrud et al., 2002; Constable, 2010). Conductive media such as sea-water

or brine filled sediments have a characteristic electromagnetic scale length (skin depth)

� =
q

2

µ!�

that is dependent on both the medium conductivity � and the frequency of

propagation !, where µ is the permeability of the medium. Owing to the fact that �

is smaller in conductive media, marine geophysical EM methods almost always operate

in the lower frequency quasi-static regime. This allows for deeper penetration of the

CSEM fields into the earth, but as a consequence it is more a di↵usive process than

wave like (Loseth et al., 2006). To first order, it is this di↵usive decay which helps

characterize the conductivity of a given medium. For hydrocarbon bearing geology, it

is the high resistivity of the hydrocarbon accumulation with respect to its surroundings

that produces a signature quite di↵erent from what would have been observed in the

absence of hydrocarbons (e.g., Constable, 2006).

Given this di↵usive nature, the stratigraphic resolution of CSEM is much lower

than that of the seismic method. However, the value of CSEM lies in its sensitivity to re-

sistivity, which may be indicative of hydrocarbon saturation, and not acoustic impedance,

which is more indicative of geological structure. As a consequence of this di↵usive nature,

robust inferences made from a CSEM survey are necessarily from inversion of the data,

and not merely from examination of the data itself (Weiss, 2007). Typically, regularized

and linearized gradient based inversion methods have been used to arrive at models that

minimize data misfit and are also ‘optimal’ in some user-defined sense. For instance,

models can be pre-determinedly smooth or prejudiced to be close to a reference model.

By means of regularization, highly oscillatory features in the model that are thought to

be outside the resolution of CSEM are suppressed (e.g., Constable et al., 1987; Newman

and Alumbaugh, 2000; MacGregor and Sinha, 2000; Abubakar et al., 2008; Key, 2009;

Sasaki, 2013; Mittet and Gabrielsen, 2013). Though gradient based inversion methods
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methods are highly e�cient and well understood, they provide only a single smooth

model as a result, or a suite of smooth models. These models provide a limited insight

into the various classes of models that are compatible with the observed data given the

noise. Furthermore, a clear understanding of the resolvability of subsurface resistivity

and non-uniqueness of the final solution does not emerge from a linearized treatment of

the non-linear CSEM problem.

To quantify the uncertainty inherent in the inversion of CSEM data, one can uti-

lize a Bayesian framework where information is expressed as probability density functions

or PDFs. Since Bayesian probability (Bayes and Price, 1763) is a measure of informa-

tion and since it is the aim of geophysical inversion to provide information about the

earth’s subsurface, it is natural to postulate geophysical inverse problems in a Bayesian

framework (Tarantola and Valette, 1982; Scales and Sneider, 1997). In such a frame-

work, model parameters are treated as random variables, and their fit to the observed

data given the observed statistical noise allows one to formulate a model likelihood. To

make the connection with deterministic inversion methods, to first order, models with

low misfit possess a higher likelihood. After incorporating prior knowledge of the mod-

els that is independent of the data, the product of the prior model probability and the

likelihood is known as the posterior model probability. This posterior PDF describes the

full solution to the inverse problem — it represents the probability of the model, given

the observed data. Those parts of the model space that are more frequently required

by the data than other parts manifest with greater posterior probability, and hence are

more certain to be properties of the earth (Backus, 1988).

Our study is not the first to apply Bayesian methods for inversion of marine

CSEM data. One of the earliest applications focused on joint inversion of CSEM and

seismic data in order to improve estimates of reservoir properties (Hou et al., 2006;

Chen et al., 2007). Gunning et al. (2010) use a hierarchical Bayesianized bootstrap

scheme for CSEM inversion. Trainor-Guitton and Hoversten (2011) use a sampling

scheme which involves both the Metropolis-Hastings algorithm (Hastings, 1970) and slice

sampling (Neal, 2003) in order to improve convergence upon the distribution of solution

models. Buland and Kolbjornsen (2012) apply the Metropolis-Hastings algorithm to

invert marine CSEM data together with magnetotelluric (MT) data in order to constrain
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the range of likely resistivities as a function of depth. In all these studies, with the

exception of Gunning et al. (2010), the parameterization is fixed at the outset by the

user. However, fixing a particular model parameterization (e.g., fixing the number of

layers or cells) for the inversion is known to produce posterior distributions, only for

the given parametrization (Dettmer et al., 2010). This is where the ‘trans-dimensional’

or ‘reversible jump’ (Green, 1995) Markov Chain Monte Carlo (RJ-MCMC) di↵ers from

traditional MCMC methods, in sampling from a posterior distribution where the number

of unknowns (i.e., the parameterization) is also treated as part of the inverse problem.

In other words, the parameterization is also inferred from the observed data. A review

of applications which use trans-dimensional MCMC can be found in Sisson (2005). Such

algorithms have a ‘parsimony’ property (Malinverno, 2002), which refers to the fact that

Bayes’ Theorem deems models that explain the data with simpler parameterizations

more probable. MacKay (2003) discusses this aspect of Bayes’ Theorem in some detail.

Malinverno (2002) was the first to use this method in a geophysical application for

DC resistivity inversion. Agostinetti and Malinverno (2010) have used this method for

receiver function inversion, as have Bodin et al. (2012). Recent applications of the trans-

dimensional method to solve geophysical EM methods can be found in Minsley (2011)

and Brodie and Sambridge (2012), who apply it the airborne EM problem, and in Ray

and Key (2012), who tackle the marine CSEM problem. An introduction to geophysical

trans-dimensional Bayesian inversion can be found in Sambridge et al. (2013).

For probabilistic inversion, the final solution is a large ensemble of models which

are statistically distributed according to a posterior model PDF. As this involves a di-

rect parameter search, hundreds of thousands of models must be evaluated and sampled

before convergence to the desired posterior model probability PDF. This computational

expense has largely limited the application of Bayesian methods for highly non-linear

problems to those with a computationally e�cient 1D model parameterization. No-

table exceptions can be found in the work of Chen et al. (2012) and Rosas-Carbajal

et al. (2013). However, though both of these works invert 2D MT and plane-wave

electrical resistivity tomography (ERT) data respectively, they use a fixed number of pa-

rameters. JafarGandomi and Binley (2013) use a trans-dimensional approach to invert

multiple datasets within a 2D depth section, but only the vertical parametrization is
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trans-dimensional while the lateral parameterization is fixed. Fully 2-dimensionally pa-

rameterized, trans-dimensional inversions have been carried out only within the last five

years. For example, Bodin and Sambridge (2009) perform seismic surface wave tomogra-

phy using Voronoi cells in a trans-dimensional formulation. Luo (2010) finds the shapes

of bodies which cause a gravity anomaly (given a fixed density contrast). Young et al.

(2013a,b) use trans-dimensional inversion for P wave tomography and seismic ambient

noise inversion. Dettmer and Dosso (2013) use this approach for geo-acoustic inversion.

To the best of our knowledge this work is the first trans-dimensional Bayesian inver-

sion that uses a true 2D model parameterization with Voronoi cells for the inversion of

geophysical EM data.

After validating our methodology using synthetic examples, we invert CSEM

data from over the Scarborough gas field on the Exmouth Plateau, o↵ the North West

Australian shelf (Myer et al., 2010, 2012).

4.2 Theory

4.2.1 Bayesian inversion with the reversible jump Markov chain Monte

Carlo algorithm

Bayesian information is contained in PDFs represented by p(·). Using Bayes’

theorem, (Bayes and Price, 1763) we write

p(m|d) = p(d|m)⇥ p(m)

p(d)
. (4.1)

This can be interpreted as

posterior =
likelihood⇥ prior assumptions

evidence
. (4.2)

For Bayesian geophysical inversion, the observed data vector d is a constant.

All PDFs with a model dependence are functions of the random variable m. The term

p(d|m) can then be interpreted as the model likelihood, the functional form of which

depends on the statistics of the noise distribution, and the value of which depends on
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the model m being sampled and its fit to observed data. For Gaussian noise, the model

likelihood is given as:

p(d|m) / exp

 
� [d� f(m)]TCd

�1[d� f(m)]

2

!
. (4.3)

Here f(m) corresponds to the modeled data and C

d

is the covariance matrix of data

errors and [d � f(m)]TCd
�1[d � f(m)] is the �2 misfit for the evaluated model m.

Care must be taken to ensure that for complex observed data (such as frequency domain

data) where the total variance equals twice that of the real or imaginary parts, the

factor of 2 should be removed from equation (4.3) and that the vector transpose should

be Hermitian (see the chapter on circularly symmetric complex random variables in

Vaidyanathan et al., 2010). The prior model distribution p(m) represents our state of

knowledge independent of the survey data. The evidence term p(d) corresponds to a

constant PDF normalizing factor equal to the integral over all models of the numerator

in equation (4.1). The evidence can help in ‘model selection,’ the process of deciding

which model parameterization is more probable than the other — e.g., should we use

two cells as opposed to three to represent the subsurface? However, evidence is very

challenging to compute as it requires evaluation of a multi-dimensional integral over

di↵erent models, evaluated for di↵erent model parameterizations. Another means of

performing model selection is to calculate the full posterior model probability distribution

p(m|d) by allowing the problem to be trans-dimensional, i.e., have a varying number of

model parameters (Dettmer et al., 2010). This is the RJ-MCMC approach that we have

used in this paper, which is di↵erent from the usual MCMC approach in the following

manner: Treating the evidence as a proportionality constant, it follows from equation

4.1 that

p(m|d) / p(d|m)⇥ p(m). (4.4)

In the trans-dimensional method, for a given model m, we split the prior distribution

p(m) into 2 parts. One part contains information about the number of cells k in the

model, p(k). The other part p(mk|k) contains information about their physical properties

such as the locations of the cells and what the resistivities of these cells are, given the
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number of cells k. Thus it follows from equation 4.4 that

p(m|d) / p(d|m)⇥ p(mk|k)⇥ p(k). (4.5)

This formulation allows the parameterization to be an unknown in the problem. Our task

is to evaluate uncertainty in the models inverted from the observed data. To this end

we must arrive at the posterior distribution of models, most of which fit the data well,

by evaluating their misfit and sampling models according to equation 4.5. However, it is

nearly impossible to exhaustively sample the model space for more than a few parameters

owing to the ‘curse of dimensionality,’ hence we resort to probing this highly non-linear

distribution using various Markov chain Monte Carlo methods (e.g., Liang et al., 2011)

and focus on the RJ-MCMC or trans-dimensional method.

4.2.2 Parametrization with Voronoi cells

Voronoi cells are an e�cient topology for parameterizing a 2D space (Voronoi,

1908). They can represent various complicated geometries, and their tessellations are

simple to compute (Okabe et al., 2009). We can specify a set of points (Voronoi nodes)

in a bounded plane, and for each node there will be a corresponding region consisting of

all points closer to that node than to any other node. These regions are called Voronoi

cells. For geophysical problems, this parameterization presents itself as a convenient

means to assign Voronoi cells with properties such as velocity (Bodin and Sambridge,

2009; Dettmer and Dosso, 2013) or as we propose to do in this work, resistivity. Only

the Voronoi nodes and their locations need to be kept track of. This is shown in Fig. 4.1,

where a tabular body of resistivity 100 ohm-m in a 1 ohm-m background has been

approximated almost perfectly by a sparse Voronoi representation with 5 cells. It should

be noted that this Voronoi diagram is not the solution to a geophysical inverse problem

but merely an example illustrating its use in simple representations of common shapes.

4.2.3 Forward modelling and parameterization

For a given transmitter-receiver (Tx-Rx) separation, we use the approximation

that observed data are primarily sensitive to the the vertical profile of seafloor resistivity
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Figure 4.1: Five Voronoi cells being used to approximate a rectangular reservoir in a
uniform background. The nodes are shown with white plus signs. The cells are entirely
defined by their node positions, as the edges (green lines) run through the perpendicular
bisectors between neighboring nodes. A profile through the reservoir (dashed red) is
located at a source-receiver midpoint with source and receiver locations each marked by
an X.



114

at the Tx-Rx mid point (Mittet et al., 2008; Gunning et al., 2010; Silva Crepaldi et al.,

2011). This is similar to a common mid-point formulation (CMP) used in reflection

seismology. This 1D approximation is numerically far less expensive than modelling the

full 2D problem. A 2D model forward evaluation, depending on the geological complexity

of the model, the number of frequencies and parallel cores used, may take from a few

seconds to minutes (Key and Ovall, 2011). However, 1D evaluations across all CMPs

for a 50 km long 2D line takes little more than half a second on average. We use 2D

Voronoi cells to parameterize the vertical cross section of the earth in a profile along

the survey line (e.g., Dettmer and Dosso, 2013). For each CMP, a vertical profile is

extracted through this Voronoi cell parameterization as shown in Fig. 4.1. The response

due to this 1D profile, at the given Tx-Rx o↵set and data frequencies is calculated using

Dipole1D (Key, 2009). Since we use Voronoi cells to parameterize a 2D depth section,

a vertical profile can be extracted anywhere within this section. This ensures that there

is no restriction on locations of sources or receivers along a linear profile.

4.2.4 Trans-dimensional Bayesian inversion

In the simplest terms, the objective of trans-dimensional Bayesian inversion is

to sample the distribution given by (4.5). This is achieved with the reversible jump

algorithm by drawing candidate models from a proposal distribution. These models

are then examined to see if they fall within geophysically sensible uniform bounds of

resistivity and depth. If a proposed model falls outside the prior distribution, it is rejected

and the Markov chain retains the previous model as the next model. If a proposed model

is within the prior bounds, an acceptance probability is calculated using a ratio of the

proposal probability, the prior probability and the likelihood of the candidate model

with respect to the previous model. The proposed model is either accepted with the

calculated probability and it becomes the next model in the chain, or it is rejected

and the previous model is retained as the next in the chain. Complete details of this

process are given in the appendix for the interested reader. As the algorithm proceeds,

hundreds of thousands of models are sampled, with a data-driven addition or deletion of

Voronoi nodes (‘birth/death’ in RJ-MCMC parlance), such that a chain of models, most

of which fit the data well within the noise, are retained at the end. To ensure thorough
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sampling of this multi-dimensional parameter space, various independent Markov chains

with di↵erent starting models are run in parallel and finally concatenated into a model

ensemble that is representative of the sought after posterior model distribution (4.5).

4.3 2D Segmented reservoir example

In order to validate our methodology, we created a 60 km long synthetic model,

with a 1 km deep sea water layer and a 30 km long, 30 m thick segmented reservoir

buried at 1 km below the seafloor (Fig. 4.2). The resistivity segments for the reservoir

are 30, 10 and 5 ohm-m, tapering away from the centre. The background resistivity is 1

ohm-m. Given that the reservoir is thin and that the resistivity contrasts are not very

high, this presents a challenging exploration target. This geometry is motivated by the

size and shape of the Scarborough reservoir in the NW Australian shelf (Myer et al.,

2010), which we consider later in this work. Synthetic data were forward calculated

using the 2.5D adaptive finite element code of Key and Ovall (2011). Gaussian noise at

5% of the signal amplitude was added to the data at four di↵erent frequencies of 0.1,

0.3, 0.7 and 1.1 Hz. Receivers recording the inline electric field were spaced every 500 m

along the line.

4.3.1 1D modeling and inversion through the central segment

Before embarking on the inversion of 2D data, we examine a 1D Bayesian inver-

sion of 1D responses from the central part of the segmented reservoir model to highlight

some salient features of Bayesian inversion. We use the 1D CSEM code and inversion

algorithm described in Ray and Key (2012). 96 independent, parallel MCMC chains

with 500,000 models in each chain were sampled to form a posterior model distribution.

This inversion required four hours on 96 CPU cores (dual socket @2.6GHz). 50 random

models from the sampled posterior, along with their data fits in phase and amplitude

are shown in Fig. 4.3. The true model is shown in red in the left most panel.

To visualize the full posterior distribution, we separately bin the resistivities and

interfaces at 10 m depth intervals. The resulting marginal distributions on resistivity

and interfaces at depth are shown in Fig. 4.4. The 5% and 95% quantiles on resistivity
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Figure 4.2: A 30 km long, 30 m thin synthetic segmented resistor model representative
of the Scarborough reservoir.
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Figure 4.3: Inversion of noisy, synthetic radial electric field data E
r

calculated from
the 1D reservoir corresponding to the centre of the 2D segmented reservoir model. The
true 1D model is shown in red in the left panel, with 50 randomly selected models from
the posterior distribution p(m|d) shown in black. The responses due to these models,
along with the observed data are shown as E field amplitude (centre) and phase (right)
plots with range.

with depth are shown in the left panel as thin black lines. Hotter colors correspond to

higher probabilities in the left panel. It can be seen that the true reservoir resistivity is

not the most probable, that it is even outside the 95% quantile, but we do see a clear

trend in sampled resistivities increasing with depth and then returning to a background

value. The fact that the true values are not the most probable, though not intuitive, is

not new as has been shown by Ray et al. (2013). This should serve as a note of caution

to prevent researchers from picking the mode of any posterior distribution as the ‘truth.’

This seems to be a statement of the fact that there are many more di↵erent ways to fit

the data within the noise, than with the very delta function like true model. In fact, one

can clearly see the well known CSEM trade-o↵ between thicker, less resistive layers and

thinner, more resistive layers (e.g., Constable and Weiss, 2006). It is worthwhile to point

out that such trade-o↵s cannot be quantified by any single result from a conventional

gradient based deterministic inversion scheme. The interface probabilities in the right

panel do show a pronounced peak in the probability of interfaces at the right depths.

For a thin reservoir, this seems to imply good sensitivity to the bottom.
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Figure 4.4: Marginal distributions on resistivity (left) and interface depth (right)
from the 1D synthetic data inversion with true model corresponding to the 1D seg-
ment through the centre of the 2D synthetic model. The true model is shown with a
thick black line in the left panel. The 5% and 95% quantiles on resistivity with depth
are shown as thin black lines on the left panel. Hotter colours are more probable.
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4.3.2 Inversion of 2D data with the CMP approach

In this section we present the inversion of the noisy synthetic 2D data from the

segmented reservoir model using the trans-dimensional Voronoi parameterization and the

CMP approach. During the inversion we calculate the forward responses for 1D profiles

through the Voronoi tessellation at every CMP location. 96 independent, parallel RJ-

MCMC chains were run on 96 CPU cores (dual socket @2.6GHz), out of which 92 chains

converged to acceptable RMS values. We would like to point out here that not all Markov

chains are able to escape local probability maxima within the given run time. Each chain

sampled 106 models but the first half of the chain is thrown away to achieve ‘burn-in’

to RMS (root mean square) values between 1.2 and 1.3. Given that the model physics

is approximate and parameterization not the same as was used to create the forward

model, we do not expect the mean RMS misfit of the sampled models to be exactly 1.0.

Uniform prior bounds require models to possess resistivities between 0.3 and 200 ohm-m,

and from 10 to 150 nodes placed between 1 and 3 km depth anywhere within the 60 km

long 2D line.

To illustrate the process of forming the posterior model ensemble, one MCMC

chain is shown in Fig. 4.5. All converged chains can be concatenated to form a single,

long chain like the one shown in the figure. One slice shows an arbitrary 2D model

parameterized by Voronoi cells. The other perpendicular slice, near the beginning of

the line, shows resistivities in vertical section across all sampled models. A histogram of

resistivities with depth can be made from the vertical section to produce a display akin

to the left pane in Fig. 4.4. Further, such histograms can be made from all vertical slices

along the 2D line to form a probability cube, with axes being resistivity, line distance and

depth, as shown in Fig. 4.6. A vertical slice of the probability cube through the centre of

the 2D line (the central segment of the reservoir) shows that there is a clear rise in the

resistivity of the subsurface with depth and then a return to the background. A horizontal

slice at 2000 m depth shows a clear increase in resistivities from a 1 ohm-m background

as we move along the survey line, increasing in steps and symmetrically decreasing as we

would expect for the segmented reservoir. Also shown in this figure is the PDF on the

number of Voronoi cells (nodes) required to form the displayed probability cube. Note

how the algorithm does not cluster around the maximum or minimum possible number
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of nodes (10 and 150) required to fit the observed data.

Based on the experience of our 1D modeling study showing the posterior trade-

o↵ between resistivity and reservoir thickness, we would not expect the most probable

resistivities sampled to be the true values, and this is indeed the case. The maximum

sampled resistivity (Fig. 4.6) is around 10 ohm-m at the reservoir depth in the central

segment, which is quite distant from the true value of 30 ohm-m. However, the proba-

bility of the integrated resistivity thickness product ⌧ =
R
⇢(z)dz between 1500 m and

2500 m depth, containing the reservoir interval, yields some valuable insights, as can

be seen in Fig. 4.7. True values are shown with black lines, and the background and

segmented reservoir ⌧ values are clearly visible as falling within the probable parts of the

marginal distribution. Previous studies have shown that ⌧ seems to be a more robust

indicator of reservoir presence than resistivity alone (Constable and Weiss, 2006; Myer

et al., 2012; Connell and Key, 2013). The posterior probabilities on this quantity bolster

this idea. For instance, even if we were to pick the mode of this distribution on ⌧ in

Fig. 4.7 near the centre of the line, though 1700 ohm-m2 is less than the true value of

1870 ohm-m2, it would not lead to a bad estimate of the reservoir resistivity. Assuming

a 30 m thick resistive layer and a 1 ohm-m background, this ⌧ value is consistent with a

24 ohm-m reservoir resistivity. Often such information on thickness is available from an

external source such as seismic imaging. Conversely, if the true resistivity of 30 ohm-m

was known, for example from well-logs, we could then estimate a probable thickness of

24 m which is not too far from the true value of 30 m.

4.4 Real Data: Scarborough Gas Field on the Exmouth

Plateau, NW Australian Shelf

4.4.1 Regional geology and reservoir setting

In this section we apply our methodology to data from the Scarborough gas

field, which lies inside the Exmouth Plateau. The plateau (Fig. 4.8) is a passive margin

between continental and oceanic crust which remains after the break-up of Australia and

India, and is surrounded on three sides by oceanic crust at abyssal depths. The plateau,
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Figure 4.5: Example MCMC chain from the segmented reservoir inversion. Here we
show both a particular Voronoi cell model #2500 and a vertical slice across all models
at -20 km along the line. Colours correspond to log

10

of resistivity.
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Figure 4.6: Slices through a probability cube from the segmented reservoir inversion,
with axes representing log

10

resistivity, position along the 2D line and depth. The
probability cube is made from histograms of all MCMC chains such as the one shown
in Fig. 4.5. Hotter colours correspond to higher probabilities. The inset box shows the
PDF on the number of Voronoi nodes required to form the probability cube.
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Figure 4.7: Probability of the integrated resistivity thickness product ⌧ between 1500
and 2500 m depth from the segmented reservoir inversion. Black lines show the true
values corresponding to the background and reservoir segments. Hotter colours are more
probable.
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which is ⇠ 400 km ⇥ 600 km, is bounded to the northeast and southwest by transform

faults. The transition between continental and oceanic crust to the northwest is thought

to be bounded by a subhorizontal detachment fault that undercuts the plateau at about

10 km depth, dipping toward the Australian continent (Driscoll and Karner, 1998). Since

the Mesozoic era, the plateau has undergone a complex sequence of fracture, extension,

uplift, truncation, and subsidence. The result is that the plateau is covered by a number

of mostly horizontal sedimentary layers of resistivities varying between 1 and 10 ohm-m

(Myer et al., 2012).

Five exploration wells have been drilled in the Scarborough gas field and their

data, combined with 3D seismic coverage, were used to define the areal extent and section

profile of the reservoir. The white contour in Fig. 4.8 is the 50% gas saturation line. The

reservoir itself (Fig. 4.9) is a 20–30 m layer residing between 1900 and 2000 m below sea

level (mbsl) in about 900–950 m of water. It has a moderate resistivity of 25 ohm-m and

is overlain by several thin layers of lower gas saturation with resistivities of 5–10 ohm-m.

4.4.2 Scripps 2009 survey and previous work in 1D

CSEM and MT data were collected during a month long research cruise using

the Scripps Institution of Oceanography’s R/V Roger Revelle (Fig. 4.8). Details of the

CSEM acquisition and MT mapping of a deep sub-horizontal conductive layer can be

found in Myer et al. (2011, 2012) and Myer et al. (2013), respectively. In this work

we have concentrated our e↵orts on inverting the inline electric field CSEM data at

frequencies of 0.25, 0.75, 1.75 and 3.25 Hz acquired over the ⇠50 km long Line 2 to the

south.

The reservoir is not a large CSEM target, as the ⌧ value is only ⇠900 ohm-m2

above the background levels of ⇠200 ohm-m2 for the reservoir section. This di↵erence

is much less than typical transverse resistances of 104 considered in many past marine

CSEM model studies (Constable and Weiss, 2006; Myer et al., 2012). Further, there

is a confounding overlying layer in the form of the resistive Gearle siltstones between

1650 and 1750 mbsl (Veevers and Johnstone, 1974), which may make it di�cult to

tease apart the reservoir layer and the Gearle siltstones without a priori information, as

reported by Myer et al. (2012) and illustrated in Fig. 4.10. Without introducing cuts in
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the inversion to separately delineate the siltstones and the reservoir, the Occam1DCSEM

inversion (thick black line) was unable to distinguish these two layers from a single layer of

moderately increased resistivity near reservoir depth. For 1D comparison, we performed

purely 1D Bayesian inversions using the methodology of Ray and Key (2012) at both

the on and o↵ reservoir sites (Figure 4.10). These inversions suggest that the probability

distribution of resistivities at reservoir depth on-reservoir (bottom, left panel)) is more

resistive than the distribution at the same depth o↵-reservoir (top, left panel). Note that

the 1D RJ-MCMC Bayesian inversions did not utilize any prejudice models or roughness

penalty cuts.

The separate trans-dimensional Bayesian results shown in Figure 4.10 do indeed

indicate that it is more probable to have a resistive reservoir at the on reservoir site than

at the o↵ reservoir site. However, these results use a 1D parameterization, and in no way

can distributions of resistivity at the two sites be correlated a posteriori. No inference

can be made about how the PDFs of resistivity vary laterally across the line. We could

perform numerous independent 1D RJ-MCMC inversions at all sites across the 2D line,

but they would not need to agree between adjacent sites, and such an exercise would

require significant computational expense. These considerations motivate the next part

of this section on inverting the Scarborough CSEM data along Line 2 using a fully 2D

model parametrization and the RJ-MCMC method.

4.4.3 Results from 2D trans-dimensional inversion using the CMP ap-

proach

An inversion with 160 independent parallel chains on 160 CPU cores (dual socket

@2.6GHz) was run on CSEM data acquired along Line 2. Four frequencies at 0.25, 0.75,

1.75 and 3.25 Hz were used, but Rx-Tx o↵sets were limited to 4 km for the observed

data to be compatible with the 1D forward model physics. Given that variations in

bathymetry along the line are minimal (see Fig. 4.8), the 2D models used a flat seafloor.

The true Rx-Tx elevation and relative seawater conductivity stratification was main-

tained. Each chain sampled 2⇥106 models, with the first half of the chain being thrown

away to achieve sampled RMS values between 1.28 and 2.08, with a total of 90 chains

converging to acceptable values. The total run time was 192 hours. Uniform prior
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Figure 4.8: A map of the Scarborough reservoir outline (white) overlaid on the
bathymetry. Instruments were deployed at points marked by filled circles in 4 phases
colored red, blue, green and magenta. In this work, we have focused on the flagship Line
2 towards the south. Modified from Myer et al. (2012).
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Figure 4.10: 1D Occam’s inversion results (thick black line) from Myer et al. (2012)
with roughness penalty cuts at the reservoir and Gearle siltstone sections at sites o↵
reservoir (top) and directly on reservoir (bottom) overlain on purely 1D Bayesian in-
version probabilities for resistivity with depth using the same data. The 5% and 95%
quantiles on resistivity with depth are shown as thin black lines on the left panels. The
1D Bayesian inversions followed the methodology of Ray and Key (2012) and were per-
formed separately.
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bounds require that models possess resistivities between 0.2 and 200 ohm-m, and from

20 to 400 nodes placed between 940.6 and 3500 m depth anywhere within the 50 km

long 2D line.

A probability cube with axes representing log
10

resistivity, Line 2 distance and

depth was formed as is shown in Fig. 4.11. The top figure shows a horizontal slice at

1950 m depth (reservoir level). The background resistivity is well sampled in this slice, at

around 1 ohm-m. The Gearle is also visible everywhere at 3.2 ohm-m in this horizontal

slice (though it should be shallower, between 1650 and 1750 mbsl and not visible in the

1950 m slice). Most interestingly, between 6 and 24 km along Line 2, where the gas

saturation was deemed to be greater than 50% from seismic and petrophysical analyses,

there is a gradual increase in resistivities such that they lie largely between 6.3 to 15.8

ohm-m. Given that we have not regularized or guided our inversion in any manner

besides use very broad uniform parameters to sample within, this is a clear indication of

a more resistive body in that section of line at ⇠1950 m depth. The middle figure shows

a vertical section through 11 km position along the line, which lies in the middle of the

reservoir outline on Fig. 4.8 (on reservoir). There is a clear increase in resistivity at 2 km

depth to values of 10 ohm-m and above, with a return to background values at deeper

depths, with suggestions of a very resistive basement at 3 km depth. The bottom figure

shows a vertical section through 50 km along Line 2, at the extreme east end of the line,

25 km outside the reservoir outline (o↵ reservoir area). If we follow the distribution of

resistivities along the line at 2 km depth from the middle figure to the bottom figure, the

bulk of the models in the distributions of resistivity at 2 km depth change from values

above 10 ohm-m down to values close to 3.16 ohm-m. Thus, looking at all three parts

of Fig. 4.11, we are able to infer that there is indeed a resistor at 1950–2000 m depth,

the lateral extents of which are limited roughly between 6 and 24 km position along

the line. We emphasize here that looking at the spatial changes in the distributions

of resistivity — as made possible by a Bayesian inversion, is a more robust method of

interpreting geology, than looking at the changes in one single, inverted model from a

regularized inversion method. The PDF on the number of Voronoi nodes required by

the trans-dimensional inversion is shown in Fig. 4.12. Again, this PDF does not cluster

either around the maximum or minimum possible number of nodes (20 and 400) and
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shows that the data require 50–150 nodes to be fit.

The probability of ⌧ between 1500 and 2500 m depth, illustrated in Fig. 4.13

(top), shows three modes corresponding to the background (1000-2000 ohm-m2), Gearle

(2500-3000 ohm-m2) and the basement (> 104 ohm-m2) resistivities. In addition there

is a clear departure from the Gearle resistivities in the same lateral section of line as the

reservoir is known to be in. This is highlighted by the boxed area of Fig. 4.13 (top) and

in the close view given in Fig. 4.13 (bottom). Further, this anomaly is ⇠900 ohm-m2

above the background modal value of 3000 ohm-m2, as expected for the reservoir.

Similar to Myer et al. (2012), we have not been able to separate the Gearle and

reservoir levels. However, unlike Myer et al. (2012) the Bayesian posterior distribution

does concentrate models with resistive anomalies at the reservoir depth. This in itself,

we think is a noteworthy aspect of our result.

4.4.4 Comparison with MARE2DEM deterministic 2D inversion

An inversion over Line 2 utilizing the full range of Rx-Tx o↵sets (⇠5.5 km)

using the deterministic MARE2DEM code (Key and Ovall, 2011; Key, 2012) is shown

in Fig. 4.14. This inversion uses 2D forward model physics and fits the data to RMS

1.0. For comparison with the 2D Bayesian inversion, the MARE2DEM inversion result

is shown intersected by two probability cube slices at 11 km and 50 km along Line 2

(Fig. 4.15). The resulting intersections are shown in thick black as profiles along the

two slice planes. The most dominant feature from the MARE2DEM inversion at 11

km along the line is high basement resistivity below 2500 m depth. Interestingly, the

Bayesian inversion probability slice at 11 km along the line also shows a large change in

resistivity distribution near this depth. Both the Bayesian probability distribution and

the deterministic inversion show an increase in resistivity at reservoir depth (⇠1950 m)

in this slice. In the slice at 50 km along Line 2, both the deterministic and Bayesian

inversions show a much reduced resistivity at reservoir depth, and both are unable to

localize the basement resistivity.

The MARE2DEM inversion shows a single model that is more resistive than the

background in the reservoir area. Depending on the model regularization philosophy

and choices of regularization parameter used, a di↵erent result may have been obtained.
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Figure 4.11: Top: A slice through the probability cube for the Scarborough data
inversion at 1950 m depth. Hotter colours are more probable. Note the probability of
increasing resistivity between 6 and 24 km along Line 2, indicative of reservoir. Middle:
A slice through 11 km along the line (on reservoir), within the known reservoir outline
shown head on. The probability of a 10 ohm-m resistive anomaly is seen clearly at 2000
m depth. Bottom: A slice through 50 km along the line (o↵ reservoir area), 25 km east
and outside of the known reservoir outline. The probability of a resistive anomaly at
2000 m depth has now all but disappeared.
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Figure 4.12: PDF on the number of Voronoi nodes required by the trans-dimensional
inversion to fit the Scarborough CSEM data.

Figure 4.13: Top: Probability of integrated resistivity thickness product ⌧ between
1500 and 2500 m depth for the Scarborough data inversion. Hotter colours are more
probable. The reservoir is seen at roughly 900 ohm-m2 above the background between 6
and 24 km along the line (dashed box). Throughout the line, the basement ⌧ consistently
shows up as being the most probable in this depth window. Bottom: Same as top, but
zoomed in to the reservoir area.
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Figure 4.14: The MARE2DEM deterministic inversion result using 2.5D forward mod-
elling for Scarborough CSEM data over Line 2. Seafloor receivers are shown as white
inverted triangles. The most prominent feature is high basement resistivity below 2.5
km depth. The reservoir section (boxed) at ⇠1.9 km depth is more resistive than its
surroundings. Resistivity at 1.9 km depth falls o↵ to lower values towards the east.
For purposes of comparison with the probabilistic inversion, two locations for vertical
slices have been shown in black at 11 and 50 km. These are the same sections shown in
Fig. 4.11 middle and bottom.

Further, a single model does not yield any information on the uncertainty with which

the model is associated. The Bayesian ensembles do indeed show how the probability

distributions of resistivity vary in the earth. However, the Bayesian inversion, though it

is parameterized in 2D, uses a 1D forward modeling engine and thus approximates the

true physics. Both of these results taken jointly, reinforce each other to make a stronger

argument for the presence of a reservoir, with an associated uncertainty.

4.5 Conclusions

We have successfully implemented a flexibly parameterized inversion scheme us-

ing 2D Voronoi cells for CSEM data. In order to accomplish this, we have used a

‘birth/death’ RJ-MCMC algorithm (Green, 1995; Bodin and Sambridge, 2009; Ray and

Key, 2012). Synthetic studies were carried out to understand the model space asso-

ciated with thin, mildly resistive reservoirs. Our results show that the true values of

resistivity for these reservoirs are not the most probable, a posteriori, and that the in-

tegrated resistivity thickness product ⌧ is a more robust quantity to examine in these

cases. Following the spatial changes in posterior distributions on both resistivity as well

as ⌧ yields valuable information on the presence and possible geometries of resistive
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Figure 4.15: Two slices through the Scarborough inversion probability cube shown at
11 km (on reservoir) and 50 km (o↵ reservoir area) along the line, comparing the Bayesian
inversion distributions (PDF proportional to colour hotness) and the MARE2DEM in-
version result (thick black line intersecting the 2 slice planes). The 11 km slice runs
through the middle of the reservoir whereas the 50 km slice is 25 km to the east of the
50% gas saturation line. These are at the same locations marked in Fig. 4.14 and show
the same slices as Fig. 4.11 middle and bottom.
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bodies. Our Bayesian inversion of field data from the Scarborough CSEM survey was

successfully able to delineate the reservoir laterally, with a good indication of its depth

but not thickness. Comparison with a MARE2DEM deterministic inversion showed

good agreement between the Bayesian and deterministic results with the added benefit

of uncertainty about the deterministic result provided by the Bayesian posterior model

ensemble. There is a degree of re-assurance in the presence of a reservoir provided by the

Bayesian posterior model distribution, when en masse, un-regularized inverted models

at certain locations within the earth tend to be more resistive.

The obvious next step is to move to full 2D forward modelling of the Voronoi

cell models used by our trans-dimensional algorithm. While 2D model responses are

computationally more expensive than their 1D counterparts, with the use of accelerated

sampling methods such as parallel tempering (Dettmer et al., 2011; Dosso et al., 2012;

Sambridge, 2013; Ray et al., 2013) and the advent of highly parallel, cluster-computing

oriented 2D forward codes (Key and Ovall, 2011), this step is not far away. Lastly,

we would like to point out that our algorithm is quite flexible and can be applied to

various classes of geophysical problems such as surface wave dispersion, seismic receiver

functions, etc.

4.A Appendix: Mathematical details for the trans-

dimensional algorithm

4.A.1 The prior probability

The prior PDF contains information on our knowledge about the subsurface

independent of the survey data. This can be based on data from well logs, seismic

surveys, etc. In the trans-dimensional formulation, we split the prior into 2 parts. One

part contains information about the number of cells k in the model, p(k). The other

part p(mk|k) in our particular case, contains information about the physical parameters

associated with a model mk of dimension k, such as where these cells are, and what the

resistivities of these cells are. Using the chain rule, we can thus write

p(m) = p(mk, k) = p(mk|k)⇥ p(k). (4.6)
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where

mk = [z,x,⇢], (4.7)

z = [z
1

, z
2

, ..., z
k

], (4.8)

x = [x
1

, x
2

, ..., x
k

], (4.9)

⇢ = [⇢
1

, ⇢
2

, ..., ⇢
k

], (4.10)

and

z 2 z, x 2 x, ⇢ 2 ⇢. (4.11)

We use a uniform prior on k, given by

p(k) =

8
<

:

1

k

max

�k

min

+1

if k
min

 k  k
max

0 else
. (4.12)

If we restrict our region of interest to be a rectangle within the vertical plane running

through the CSEM survey line, we can define a uniform prior on the position of Voronoi

nodes within this rectangle p(z,x). We assume no a priori knowledge between the

locations of nodes in the model and the Voronoi cell resistivities ⇢. These random

variables are independent and therefore their PDFs can be separated in the following

product form,

p(mk|k) = p(z,x|k)p(⇢|k). (4.13)

Voronoi nodes can be located anywhere in the rectangular subsurface area defined by

[z
min

, z
max

] and [x
min

, x
max

]. A given node can be at any of K (temporarily discrete)

points within this rectangle. For k nodes, we can arrange them without paying attention

to their ordering in K!

k!(K�k)!

ways. Note that this unspecified variable K will cancel out

of the expressions we need to use in the algorithm and is only introduced for ease of

mathematical derivation. Thus,

p(z,x|k) =

8
>><

>>:

"
K!

k!(K�k)!

#�1

if z
min

 z  z
max

and x
min

 x  x
max

0 else

. (4.14)
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Assuming that all k Voronoi cell resistivities within a given model lie uniformly between

⇢
min

and ⇢
max

, independent of each other, we write

p(⇢|k) =

8
>><

>>:

"
1

⇢

max

�⇢

min

#
k

if ⇢
min

 ⇢  ⇢
max

0 else

. (4.15)

To obtain the explicit expression for the prior model probability, we write �⇢ = ⇢
max

�

⇢
min

and �k = k
max

�k
min

+1 and substitute equations (4.12) – (4.15) into (4.6) to get

p(m) =

8
>>><

>>>:

k!(K�k)!

K!�k(�⇢)

k

if z 2 [z
min

, z
max

], x 2 [x
min

, x
max

],

⇢ 2 [⇢
min

, ⇢
max

], 8k 2 [k
min

, k
max

]

0 else

. (4.16)

We must mention here that it is natural in geophysical EM to parameterize models using

log
10

(resistivity) instead of linear resistivity (e.g., Ray and Key, 2012), a practice we have

followed in our implementation.

4.A.2 MH algorithms and the acceptance probability

What guides an MCMC sampler like the MH algorithm to convergence upon

the posterior distribution is the acceptance probability ↵ (e.g., Liang et al., 2011). At

every step of the Markov Chain, a candidate model is sampled by perturbing the current

model from a known distribution (the proposal distribution q) and the acceptance ↵ is

calculated. A random number r is then sampled uniformly from the interval [0,1]. If

r < ↵ the proposed perturbation is accepted, else the old model is retained. The rationale

behind this algorithm can be explained by examining in more detail the expression for

↵ (Bodin and Sambridge, 2009), where

↵(m0|m) = min

"
1,

p(m0)

p(m)
⇥ p(d|m0)

p(d|m)
⇥ q(m|m0)

q(m0|m)
⇥ |J|

#
. (4.17)

Here m

0 is the new proposed model and m is the old model (throughout this paper,

primes will denote new model values). Specifically, p(m0
)

p(m)

is the prior ratio, p(d|m0
)

p(d|m)

is the

likelihood ratio and q(m|m0
)

q(m0|m)

is the proposal ratio. The Jacobian term |J| is not to be
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confused with the model Jacobian needed for gradient based inversions (e.g., Constable

et al., 1987), but is a matrix that incorporates changes in model dimension when moving

from m to m

0. In a classic MH algorithm with a fixed number of dimensions, the prior

ratio (for uniform priors), proposal ratio (for symmetric proposals), and Jacobian term

are all 1 (Dettmer et al., 2010). Hence the algorithm always moves towards areas of

higher posterior probability if the data misfit improves (likelihood ratio > 1). However,

it can also move to areas of lower posterior probability with a probability ↵ if the misfit

does not improve (likelihood ratio < 1).

To be able to compare likelihoods between models with di↵erent numbers of

parameters (i.e., with di↵erent dimensions), the Jacobian in the acceptance term in

equation (4.17) needs to be evaluated. There are various implementations of RJ-MCMC,

and in all the examples cited so far, a ‘birth-death’ scheme has been used. As shown in

Bodin and Sambridge (2009) and Dettmer et al. (2010) for the ‘birth-death’ RJ-MCMC

scheme, this Jacobian term is unity. We have adopted the ‘birth-death’ algorithm in this

paper and shall not concern ourselves with this Jacobian term any further.

As to why the algorithm should not always look to improve the data fit by simply

increasing the number of parameters (Voronoi cells in the seabed), if we examine equation

(4.17) we find that even if the likelihood ratio times the proposal ratio is greater than

one for a proposed move that inserts a new cell into the model, the prior ratio will be

less than one owing to the fact that the new prior PDF p(m0) needs to integrate over a

larger number of parameters to equal 1. Hence, there is an opposition to the ‘birth’ of a

new layer (which may lead to improvement of data fit) by the prior ratio.

4.A.3 Outline of our algorithm

We start the algorithm with a very simple model, with k = k
min

. We then

allow the algorithm to iteratively add Voronoi nodes (‘birth’) or remove them (‘death’),

perturbing the Voronoi cell resistivities, as the data may demand via the acceptance

probability ↵ in (4.17). In brief, this is how we proceed:
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Initialization

Start the algorithm with k = k
min

and all resistivities set to that of a uniform 1

ohm-m half space. The Voronoi nodes are randomly distributed within the prior bounds

rectangle.

Choose one of 4 moves

1) Update: Perturb a randomly chosen Voronoi cell resistivity about its current value

using a Gaussian proposal q(m0|m) with a standard deviation ⌃
⇢

, where

q(m0|m) =
1p
2⇡⌃

⇢

exp

"
� 1

2⌃2

⇢

(⇢0 � ⇢)2
#
. (4.18)

Note that this update move does not involve a change in the number of cells.

2) Birth of a new node: k0 = k + 1. In the rectangular area defined by [z
min

, z
max

] and

[x
min

, x
max

], randomly and with uniform probability we select an unoccupied point and

insert a node. This node forms the nucleus for a new Voronoi cell, the resistivity of

which is assigned by perturbing the old resistivity value at that location according to a

Gaussian proposal with standard deviation ⌃
bd

.

3) Death of an interface: k0 = k�1. An existing node is selected at random and deleted.

4) Move a node location: An existing node is selected at random and its position is

perturbed by 2 independent 1D Gaussian proposals with standard deviation ⌃
mz

and

⌃
mx

for the z and x directions, respectively. Note that this step does not involve a

change in the number of cells either.

At each step, one of these moves is chosen with a certain probability, such that

the move probabilities sum to unity. In addition, the birth and death probabilities must

be set equal. We set the probabilities as follows:

[update, birth, death,move] ⌘
"
1

4
,
1

4
,
1

4
,
1

4

#
.

At each step of the Markov chain, the proposed model is evaluated for acceptance.

If it is accepted, it becomes the current model. If it is rejected, the current model

is preserved and the algorithm moves on to the next step. In order to compute the
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acceptance, one needs to evaluate equation (4.17), for which we explicitly describe the

proposal distributions and their ratios in the next section.

4.A.4 Proposal distributions and acceptance probabilities

Fixed dimension moves

For all moves that are neither birth nor death, the number of cells remain fixed.

In these moves, we have elected to use Gaussian proposals to suggest the new model

parameters by centering the proposals on the old parameters and drawing a random

number from a normal distribution with a given standard deviation (step size). We

can see from equation (4.18) these kinds of moves are symmetric, implying that the

probability to go from the old state to the new state is the same as it would be in going

from the new state to the old state:

"
q(m|m0)

q(m0|m)

#

fixed

= 1. (4.19)

Since the number of dimensions remains constant, the prior ratio in equation (4.17) is 1.

Hence for fixed dimension moves, we find that the acceptance probability is simply the

ratio of the likelihoods:

↵
f

=

8
>>>>><

>>>>>:

min

"
1, p(d|m

0
)

p(d|m)

#
if z 2 [z

min

, z
max

], x 2 [x
min

, x
max

],

⇢ 2 [⇢
min

, ⇢
max

],

0 else

. (4.20)

Birth move

For a birth move, one can select from out of K � k unoccupied spaces. The

perturbation for the birthed cell’s resistivity is drawn from a Gaussian with standard

deviation ⌃
bd

, centered about the old value in the cell. Since the selection of a position
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and the perturbations are independent, we can write

q(m0|m) = q(z0,x0|m)q(⇢0|m) (4.21)

=
1

(K � k)

1p
2⇡⌃

bd

exp

"
� (⇢0 � ⇢)2

2⌃2

bd

#
. (4.22)

For the reverse move in a birth, keeping in mind that the current state has k cells, there

were k + 1 cells to delete from, and the probability of removing resistivities in a cell in

the reverse move is 1. Thus we have

q(m|m0) = q(z,x|m0)q(⇢|m0) (4.23)

=
1

(k + 1)
⇥ 1. (4.24)

It follows in a birth move, from equations (4.22) and (4.24), that the proposal ratio can

be written as "
q(m|m0)

q(m0|m)

#

birth

=
(K � k)

p
2⇡⌃

bd

k + 1
exp

"
(⇢0 � ⇢)2

2⌃2

bd

#
. (4.25)

Finally from equations (4.16), (4.17) and (4.25) we get for the birth moves, the following

acceptance probability

↵
b

=

8
>><

>>:

min

"
1,

p
2⇡⌃

bd

�⇢

exp
h
(⇢

0�⇢)

2

2⌃

2
bd

i
p(d|m0

)

p(d|m)

#
⇢ 2 [⇢

min

, ⇢
max

], 8k 2 [k
min

, k
max

]

0 else

.

(4.26)

Death move

In a death move, one can select one of k places for deletion. Further, the proba-

bility of removing resistivities in a cell is certain. Thus,

q(m0|m) = q(z0,x0|m)q(⇢0|m) (4.27)

=
1

k
⇥ 1. (4.28)

In the reverse move for death, since the reference state has k interfaces, there are K �

(k � 1) sites at which to add an interface. Further, the resistivity perturbations are
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proposed using a Gaussian centered around the current value. Hence

q(m|m0) = q(z,x|m0)q(⇢|m0) (4.29)

=
1

K � k + 1
⇥ 1p

2⇡⌃
bd

exp

"
� (⇢� ⇢0)2

2⌃2

bd

#
. (4.30)

Thus we can see from equations (4.28) and (4.30) that the proposal ratio for death can

be written as:

"
q(m|m0)

q(m0|m)

#

death

=
k

(K � k + 1)
p
2⇡⌃

bd

exp

"
� (⇢� ⇢0)2

2⌃2

bd

#
. (4.31)

Again from equations (4.16), (4.17) and (4.31) we get for the death moves, the following

acceptance probability

↵
d

=

8
>><

>>:

min

"
1, �⇢p

2⇡⌃

bd

exp
h
� (⇢

0�⇢)

2

2⌃

2
bd

i
p(d|m0

)

p(d|m)

#
8k 2 [k

min

, k
max

]

0 else

. (4.32)

It should be noted that the derived expressions for ↵ in equations (4.20), (4.26) and

(4.32) do not involve the variable K (as promised) and are identical in form to the

expressions derived in Bodin and Sambridge (2009). This demonstrates how flexible the

algorithm is when solving completely di↵erent kinds of geophysical problems.

Further, we mention here that in practice, the log of the acceptance probabilities

are calculated and compared against the log of a uniform random number between 0+

and 1. Taking log avoids many problems of numerical stability in the evaluation of

equation 4.17.

4.A.5 Synergy between birth and death

At this juncture, we point out that the birth and death moves operate ‘in concert’.

Examining equations 4.26 and 4.32, we see that for the same change in the likelihood

ratio, the birth and death acceptance probabilities are inverses of each other. The birth

move encourages large steps to be taken in the model space, while the death move

encourages very small steps in the model space. Thus birth ensures that there should
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be an increase in dimension, only when the current model is quite di↵erent from the

proposed model (within the prior bounds, of course). On the other hand, the death

move ensures that when the proposed model is very similar to the current one, there

should be a decrease in dimensions and an unnecessary cell is then removed.

This synergy between birth and death also explains why the RJ-MCMC algorithm

does not keep adding or deleting cells in order to explain the observed data. This is

another aspect of Bayesian natural parsimony.

4.A.6 Convergence to the posterior distribution

The algorithm is run for a given number of steps until it is deemed to have

collected enough samples to provide a reasonable estimate of the posterior model PDF.

There are a couple of caveats in this regard, as there are with any MCMC sampler (Liang

et al., 2011). If the algorithm is seeded with an initial model that is in a low posterior

probability region, it may take quite a few steps till it reaches a region of high posterior

probability, such that it begins to sample models, most of which fit the data within the

given data error. The number of such required steps (which are subsequently discarded

in the final chain) is known in MCMC parlance as the ‘burn-in’ period, which depends

on how well the proposal distributions have been scaled (Chib and Greenberg, 1995).

This brings us to the step sizes (scaling) in the proposal distributions in the form of the

standard deviations ⌃
⇢

,⌃
mz

,⌃
mx

and ⌃
bd

required in the various proposals to generate

a new candidate model. The form of the proposal distributions should ‘emulate’ the

posterior for e�cient sampling, but since the posterior distribution may be complicated

(and unknown a priori), any kind of simple distribution, symmetric where possible, can

be used. The exact form of the proposal does not a↵ect the final solution, at least in

theory. For the Scarborough problem, we used the following step sizes with Gaussian

proposals:

[⌃
⇢

,⌃
mz

,⌃
mx

,⌃
bd

] ⌘
"
0.1, 10, 150, 0.6

#
,

with the resistivity step sizes ⌃
⇢

and ⌃
bd

specified in log
10

units and the move node step

sizes ⌃
mz

and ⌃
mx

in metres.

The suitability of the step size for the problem at hand can be examined by
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looking at the number of samples accepted in a large interval of steps, referred to as the

acceptance rate. If the acceptance rate is too low, it means that the step sizes are too

large as lots of steps are falling outside the prior bounds or are being rejected as they

land in low probability (high misfit) areas. If the acceptance rate is too high, then it

implies that the algorithm isn’t exploring the model space enough and will again be slow

to converge upon the posterior distribution.

While the sampled posterior should not depend on the size of the steps taken,

one has to factor in the optimality of the step size as otherwise convergence will be very

slow (Bodin and Sambridge, 2009). For an illuminating discussion on this matter, one

can refer to Chib and Greenberg (1995) or Trainor-Guitton and Hoversten (2011) for a

more recent discussion relevant to marine CSEM. For further discussions on convergence

diagnostics and the practicality of their application, one can refer to Liang et al. (2011).

A heuristic method to examine speed of convergence is to monitor the ‘distance’ travelled

from one sampling step to the next over a window of a certain number of steps. We can

project model resistivity values on to an underlying grid, and then look at the norm

of the di↵erence between grid values for two successive models. We can then find the

average distance travelled over a given step size window.

The algorithm should be run long enough at the lowest acceptable range of RMS

values (achieved after the burn-in period) such that there is at least stationarity achieved

in the square misfit with iteration number. Further, to ensure that the inferred posterior

is not biased due to being trapped in local maxima (of the posterior probability), we

recommend that the algorithm be run from many di↵erent starting points, ideally in

parallel for computational e�ciency. The final ensemble for posterior inference can be

constructed by concatenating the various parallel chains (e.g., Dettmer et al., 2010; Bodin

et al., 2012; Ray and Key, 2012). Another means of e�cient convergence to the posterior

distribution can be to use parallel interacting Markov chains as described in Dettmer

and Dosso (2012) and Ray et al. (2013).



145

Acknowledgments

We would like to thank the Seafloor Electromagnetic Methods Consortium at

the Scripps Institution of Oceanography, UC San Diego for funding this work. T. Bodin

acknowledges funding support from the Miller Foundation at UC Berkeley. The San

Diego Supercomputer Center at UCSD is thanked for providing access to the Triton

Shared Computing Cluster. BHP Billiton is thanked for funding the data acquisition

project.

All 3D visualizations and probability cube manipulations were carried out using

VisIt. The VisIt project is at http://visit.llnl.gov

Chapter 4, in full, has been submitted for publication of the material as it may

appear in Geophysical Journal International, Ray, A., Key, K., Bodin, T., Myer D., and

Constable S., John Wiley and Sons Ltd., 2014. The dissertation author was the primary

investigator and author of this paper.



References

Abubakar, A., Habashy, T. M., Druskin, V. L., Knizhnerman, L., and Alumbaugh, D.,
2008: 2.5D forward and inverse modeling for interpreting low-frequency electromag-
netic measurements. Geophysics, 73(4), F165–F177.

Agostinetti, N. P., and Malinverno, A., 2010: Receiver function inversion by trans-
dimensional Monte Carlo sampling. Geophysical Journal International, 181, 858–872.

Backus, G. E., 1988: Bayesian inference in geomagnetism. Geophysical Journal Interna-

tional, 92(1), 125–142.

Bayes, T., and Price, R., 1763: An Essay towards Solving a Problem in the Doctrine
of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in
a Letter to John Canton, A. M. F. R. S. Philosophical Transactions, 53, 370–418.
doi:10.1098/rstl.1763.0053.

Bodin, T., and Sambridge, M., 2009: Seismic tomography with the reversible jump
algorithm. Geophysical Journal International, 178(3), 1411–1436.
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Chapter 5

Conclusions

This dissertation has attempted to weave together the worlds of marine CSEM

and Bayesian inversion, which have so far been fairly disparate topics, at least in the opin-

ion of the author. Further, the method of inversion we have applied is trans-dimensional

and utilizes the Reversible Jump MCMC scheme. It is a powerful tool that allows us to

automatically carry out a second level of inference - namely what is a good parameteri-

zation to model the data with?

In Chapter 2 we have detailed the mathematical innards of the RJ-MCMC al-

gorithm to the point that any reasonably capable geophysicist will be able to code the

method up and apply it to their problem of interest. To address the computational

demands made by RJ-MCMC, in Chapter 3 we implemented a technique in which par-

allel MCMC chains with di↵erent annealing factors are allowed to interact and exchange

information, drastically cutting down the amount of sampling required. In a recent de-

velopment (pers. comm. with J. Dettmer), we have removed the restriction on allowing

only adjacent chains to interact and have allowed all unique pairs of chains to exchange

models, which allows for even faster convergence to the posterior ensemble. In fact, we

have been able to adapt this modified algorithm with relative ease for solving the 1D MT

inverse problem (pers. comm. with D. Alumbaugh). In Chapter 4 we have successfully

solved a CSEM inverse problem which requires a 2D model parameterization for data

acquired over the Scarborough gas field in NW Australia. We have been able to delineate

an existing hydrocarbon reservoir which has consistently proved to be a di�cult CSEM

inversion target.
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I would like to take this opportunity to stress the fact that marine CSEM unlike

its high frequency counterparts such as ground penetrating radar, is not ‘just like the

seismic method, only lower frequency.’ As explained in Chapter 1, the physics of di↵usive

propagation o↵er intrinsically low resolution, but may yet be used to indicate presence

of resistive structure as opposed to stratigraphic information.

Uncertainty is an inescapable aspect of our lives that we need to embrace, espe-

cially in geophysical inversion. All exploration geophysics is essentially decision support

– and decisions made with insu�cient information can have very negative consequences.

With the rapid rate at which computational power is increasing, the application of data

assimilation and inference techniques to complicated real world problems such as speech

recognition and machine learning is now routine. These techniques are intrinsically prob-

abilistic and I expect to see their application to geophysical problems in the near future.

To be honest we are still novices at interpreting uncertainty and making decisions

based on our knowledge of uncertainty. This is true in the geophysical world, both in

the realm of academia as well as industry. The challenge will be to integrate su�cient

knowledge of physics, geology and machine learning into a framework that provides

interpretable uncertainty information on which to base real world decisions. Although I

cannot claim to have much knowledge of any of the three fields recently alluded to, this

dissertation is what I hope will be a step in that direction.


