Target Detectability
in a
Marine Controlled-Source EM Survey

James Behrens
SIO Marine EM Lab
Short Course - 17 Feb 2005

www.marineemlab.ucsd.edu
Seismic method shortfalls

Creating a conductivity model

Testing common scenarios in 1-D

Target thickness
Target resistivity
Target depth
Effect of shallow resistors
 hydrate
 evaporite
 salt
Effect of shallow water

Discussion / Conclusions
Seismic Direct Hydrocarbon Indicator analysis is not foolproof:

- Rugose seafloor
- Large acoustic impedance contrast at seafloor
Seismic Direct Hydrocarbon Indicator analysis is not foolproof:

- Rugose seafloor
- Large acoustic impedance contrast at seafloor
- “Fizz gas”
- Oil-Water contact
Seismic Direct Hydrocarbon Indicator analysis is not foolproof:

- Rugose seafloor
- Large acoustic impedance contrast at seafloor
- "Fizz gas"
- Oil-Water contact
- mud volcanoes, gas clouds
- subsalt imaging
- complex structure
seismic method shortfalls

Will a Marine CSEM survey be sensitive to the resistivity of your target stratum?

“Do the modeling.”
outline

Seismic method shortfalls

Creating a resistivity model

Testing common scenarios in 1-D

- Target thickness
- Target resistivity
- Target depth
- Effect of shallow resistors
 - hydrate
 - evaporite
 - salt
- Effect of shallow water

Discussion / Conclusions
creating a resistivity model

seismic section

+)

resistivity log

depth, m

resistivity, Ωm

=)

Seawater
$0.3 \ \Omega$m

Hydrate
$3 \ \Omega$m

Sediment
$1 \ \Omega$m

Target
$50 \ \Omega$m, 100 m
using resistivity logs

Hz - kHz range: low frequency approximation, same as CSEM

MHz range: dielectric effects, unlike CSEM

Logs can be decimated.

If directional logs are available, use vertical (or dip-normal) resistivities.

Laterolog vs. Induction tool
outline

Seismic method shortfalls

Creating a resistivity model

Testing common scenarios in 1-D

- Target thickness
- Target resistivity
- Target depth
- Effect of shallow resistors
 - hydrate
 - evaporite
 - salt
- Effect of shallow water

Discussion / Conclusions
quick modeling studies

1 - D forward models using Flosadottir and Constable code

Available as WHAM

Instantaneous

Rapid assessment of many targets / fields
quick modeling studies

1 - D forward models using Flosadottir and Constable code

Available as WHAM

Instantaneous

Rapid assessment of many targets / fields

Radial mode sensitivity to target resistivity

Transmitter height 50 m
quick modeling studies

1 - D forward models using Flosadottir and Constable code

Available as WHAM

Instantaneous

Rapid assessment of many targets / fields

Radial mode sensitivity to target resistivity

Transmitter height 50 m

Caution: burial depth vs. lateral extent
generic survey layout

plan view

suspected target
multiple frequencies available

Transmitter Waveform: Square Wave

- **Amplitude spectrum, non-normalized**
 - Frequency range: 0 to 10 Hz
 - Amplitude range: 0 to 1.5

- **Transmitter waveform**
 - Time range: 0 to 4 seconds
 - Amplitude range: -1 to 1
Seismic method shortfalls

Creating a resistivity model

Testing common scenarios in 1-D

Target thickness
Target resistivity
Target depth
Effect of shallow resistors
- hydrate
- evaporite
- salt
Effect of shallow water

Discussion / Conclusions
reference model

<table>
<thead>
<tr>
<th>Layer</th>
<th>Conductivity (Ω m)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td>(\infty)</td>
<td></td>
</tr>
<tr>
<td>Seawater</td>
<td>0.3</td>
<td>1000</td>
</tr>
<tr>
<td>Sediment</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>Target</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
reference model
reference model

Top Diagram
- **colors**: \(\Delta \log_{10}|E|\)
- **contours**: \(\log_{10}|E|\)
- **Legend**: solid = sediments, dashed = w/ target

Bottom Diagram
- **colors**: \(\Delta \text{phase}\)
- **contours**: phase
- **Legend**: solid = sediments, dashed = w/ target

Layers
- **Atmosphere**: \(\infty \Omega_m\)
- **Seawater**: \(0.3 \Omega_m, 1000 \text{ m}\)
- **Sediment**: \(1 \Omega_m, 1000 \text{ m}\)
- **Target**: \(100 \Omega_m, 100 \text{ m}\)
reference model: 100 m
thinner target: 50 m
thinner target: 10 m
thinner target: 1 m

Atmosphere $\infty \ \Omega$ m

Seawater 0.3 Ω m, 1000 m

Sediment 1 Ω m, 1000 m

Target 100 Ω m, 1 m

1 m thick
Seismic method shortfalls

Creating a resistivity model

Testing common scenarios in 1-D

- Target thickness
- **Target resistivity**
 - Target depth
 - Effect of shallow resistors
 - hydrate
 - evaporite
 - salt
 - Effect of shallow water

Discussion / Conclusions
reference model: 100 Ωm

Atmosphere ∞ Ωm

Seawater 0.3 Ωm, 1000 m

Sediment 1 Ωm, 1000 m

Target 100 Ωm, 100 m

canonical model: target resistivity 100 Ωm
less resistive target: 50 Ωm
less resistive target: 10 Ωm
less resistive target: 5 \(\Omega \)m

Atmosphere

- \(\infty \) \(\Omega \)m

Sediment

- 1 \(\Omega \)m, 1000 m

Target

- 5 \(\Omega \)m, 100 m

SEDIMENT RESPONSE

Boundary Conditions

- Atmosphere: \(\infty \) \(\Omega \)m
- Seawater: 0.3 \(\Omega \)m, 1000 m
- Sediment: 1 \(\Omega \)m, 1000 m
- Target: 5 \(\Omega \)m, 100 m

Instrument Noise

- \(5 \Omega \)m target

Figure:

- **Left Panel:**
 - Sediment and cm6a responses
 - Color scale: \(\Delta \log_{10} |E| \)
 - Contours: \(\log_{10} |E| \)
 - Solid = sediments
 - Dashed = w/ target

- **Right Panel:**
 - cm6a 0.31623 Hz, Radial mode
 - |E| w/o target
 - |E| w/ target
 - "Air wave"
 - Instrument noise level
 - Phase

Legend:

- Instrument noise level
- Detection window?
Seismic method shortfalls

Creating a resistivity model

Testing common scenarios in 1-D

- Target thickness
- Target resistivity
 - **Target depth**
 - Effect of shallow resistors
 - hydrate
 - evaporite
 - salt
 - Effect of shallow water

Discussion / Conclusions
reference model: 1 km
deeper target: 1.5 km
deeper target: 2 km
deeper target: 2.5 km
deeper target: 3 km
Seismic method shortfalls

Creating a resistivity model

Testing common scenarios in 1-D

- Target thickness
- Target resistivity
- Target depth
- **Effect of shallow resistors**
 - hydrate
 - evaporite
 - salt
- Effect of shallow water

Discussion / Conclusions
reference model: no hydrate
gas hydrate layer at 100 - 150 m
outline

Seismic method shortfalls

Creating a resistivity model

Testing common scenarios in 1-D

- Target thickness
- Target resistivity
- Target depth
- **Effect of shallow resistors**
 - hydrate
 - **evaporite**
 - salt
- Effect of shallow water

Discussion / Conclusions
reference model: no evaporite or salt

- **Atmosphere**: $\infty \, \Omega_m$
- **Seawater**: $0.3 \, \Omega_m, 1000 \, m$
- **Sediment**: $1 \, \Omega_m, 1500 \, m$
- **Target**: $50 \, \Omega_m, 50 \, m$
evaporite at 1 km

Atmosphere $\infty \Omega m$

Seawater $0.3 \Omega m$, 1000 m

Sediment, 1000 m

Evaporite $100 \Omega m$, 15 m

Target $50 \Omega m$, 50 m

Instrument noise level

"air wave"

difference between models

data uncertainty

overlying evaporite does not obscure target

☑
salt centered at 1km

colormap: $\Delta \log_{10} |E|$ contours: $\log_{10} |E|$ solid = sediments dashed = w/ target

colormap: Δphase contours: phase solid = sediments dashed = w/ target

colormap: $|E|$ w/o target $|E|$ w/ target

colormap: $\Delta \log_{10} |E|$, Δphase

Atmosphere $\infty \Omega_m$
- Seawater $0.3 \, \Omega_m$, 1000 m
- Sediment, 900 m
- Salt $100 \, \Omega_m$, 200 m
- Target $50 \, \Omega_m$, 50 m

overlying salt obscures target

Source-receiver offset (km)
- Frequency (Hz)
- $|E|$ (V/Am2)
- Phase (deg)
- $\Delta \log_{10} |E|$
- Δphase

$\Delta |E|$ Δphase

Instrument noise level
Seismic method shortfalls

Creating a resistivity model

Testing common scenarios in 1-D

Target thickness
Target resistivity
Target depth
Effect of shallow resistors
 hydrate
 evaporite
 salt
Effect of shallow water

Discussion / Conclusions
reference model: 1 km water depth
shallow water: 750 m water depth

colorscale: $\Delta \log_{10}|E|$
contours: $\log_{10}|E|$
solid = sediments
dashed = w/ target

colorscale: Δphase
contours: phase
solid = sediments
dashed = w/ target

Atmosphere $\infty \Omega$ m

Seawater 0.3 Ω m, 750 m

Sediment 1 Ω m, 1000 m

Target 50 Ω m, 50 m

water depth 750 m

Atmosphere $\infty \Omega$ m

Seawater 0.3 Ω m, 750 m

Sediment 1 Ω m, 1000 m

Target 50 Ω m, 50 m

water depth 750 m

Atmosphere $\infty \Omega$ m

Seawater 0.3 Ω m, 750 m

Sediment 1 Ω m, 1000 m

Target 50 Ω m, 50 m

water depth 750 m

Atmosphere $\infty \Omega$ m

Seawater 0.3 Ω m, 750 m

Sediment 1 Ω m, 1000 m

Target 50 Ω m, 50 m

water depth 750 m

Atmosphere $\infty \Omega$ m

Seawater 0.3 Ω m, 750 m

Sediment 1 Ω m, 1000 m

Target 50 Ω m, 50 m

water depth 750 m

Atmosphere $\infty \Omega$ m

Seawater 0.3 Ω m, 750 m

Sediment 1 Ω m, 1000 m

Target 50 Ω m, 50 m

water depth 750 m

Atmosphere $\infty \Omega$ m

Seawater 0.3 Ω m, 750 m

Sediment 1 Ω m, 1000 m

Target 50 Ω m, 50 m

water depth 750 m
shallow water: 500 m water depth

Atmosphere \(\sim \) \(\infty \) Ohm
Seawater 0.3 Ohm, 500 m
Sediment 1 Ohm, 1000 m
Target 50 Ohm, 50 m

water depth
500 m

|E| w/o target
|E| w/ target

"air wave"

instrument noise level

Sediments
"solid = sediments"
dashed = w/ target

colorscales:
- \(\Delta \log_{10} \|E\| \)
- \(\Delta \text{phase} \)

Contours:
- \(\log_{10} \|E\| \)
- \(\text{phase} \)

Instrument noise level

Detection window

|E| w/ target

|E| w/o target
shallow water: 250 m water depth

colorscale: $\Delta \log_{10} |E|$
contours: $\log_{10} |E|$
solid = sediments
dashed = w/ target

colorscale: Δphase
contours: phase
solid = sediments
dashed = w/ target

source-receiver offset (km)

frequency (Hz)

$|E|$ w/o target
$|E|$ w/ target

Atmosphere $\propto \Omega_m$

Atmosphere
∞

Seawater 250 m

Seawater 250 m, 250 m

Target
50 Ω_m, 50 m

Instrument noise level

$|E|$ w/o target

$|E|$ w/ target

Water depth
250 m
shallow water: 55 m water depth

- **colors**
 - sed55 : (-) & cm2a55 (-) : $|E|$ (V/Am2)
 - cm2a55 0.31623 Hz, Radial mode
 - Phase: solid = sediments, dashed = w/ target
 - Instrument noise level
 - "air wave"

- **axes**
 - frequency (Hz)
 - source-receiver offset (km)
 - phase (deg)

- **models**
 - Atmosphere $\propto \Omega m$
 - Sediment $1 \Omega m, 1000 m$
 - Target $50 \Omega m, 50 m$

- **water depth**
 - 55 m

- **legend**
 - Atomsphere
 - Sediment
 - Target
 - Water depth
Seismic method shortfalls

Creating a resistivity model

Testing common scenarios in 1-D

Target thickness
Target resistivity
Target depth
Effect of shallow resistors
 hydrate
 evaporite
 salt
Effect of shallow water

Discussion / Conclusions
What to do next?
What to do next?

Ask contractors to model your best target(s) in 3-D.
What to do next?

Ask contractors to model your best target(s) in 3-D.

If it still looks good: get on the boat.
What to do next?

Ask contractors to model your best target(s) in 3-D.

If it still looks good: get on the boat.

Drill (or don’t).
What to do next?

Ask contractors to model your best target(s) in 3-D.

If it still looks good: get on the boat.

Drill (or don’t).

* technology and data interpretation advancing rapidly
conclusions

Seismic DHI methods aren’t foolproof
conclusions

Seismic DHI methods aren’t foolproof

Seismic sections + resistivity log = model
conclusions

Seismic DHI methods aren’t foolproof

Seismic sections + resistivity log = model

1-D modeling for rapid assessment of targets
conclusions

Seismic DHI methods aren’t foolproof

Seismic sections + resistivity log = model

1-D modeling for rapid assessment of targets

Target detectability depends on many factors
conclusions

Seismic DHI methods aren’t foolproof

Seismic sections + resistivity log = model

1-D modeling for rapid assessment of targets

Target detectability depends on many factors

Contractor capabilities differ