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GLOBAL BUSINESS

An Energy Coup for Japan: ‘Flammable Ice’

By HIROKO TABUCHI MARCH 12, 2013

Gas flames being expelled from a burmner in a deep-sea drilling vessel in the Pacific off Japan. Jogmec, via European Pressphoto Agency

TOKYO — Japan said Tuesday that it had extracted gas from offshore deposits of
K4 Emai methane hydrate — sometimes called “flammable ice” — a breakthrough that officials
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Hydrate: the What, the Where, and the Why
Laboratory studies of hydrate electrical conductivity
Marine EM methods

Hydrate Ridge experiment

The Vulcans

2015 San Diego Trough tests

Concluding remarks



What:

e
- - -
. ¥

o
—

0 10 20
Temperature, °C



Where;

¢ Gas hydrate recovered
® Gas hydrate inferred

US Geological Survey



Itis a hazard to drilling and infrastructure

Itis viewed by some as a potential energy source

Methane release may play arole in climate change

s a significant part of the global carbbon cycle

Hydrate may play a role in marine CO2 sequestration

t can confound interpretation of marine EM for exploration

There is a lot of it

Photos courtesy Arnold Orange



A lot, but, global volume is highly uncertain:
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The hydrate resource pyramid.

Estimated Potential
Technical Recoverability

/\ TRRlikely
) TRR Possible

/\

TRR Very low

Pore-filling
in sands

. Grain-displacing
in “fractured” muds

. Pore-filling
in muds

Boswell and Collett, 2011



Quantification of hydrate volume using seismic methods is difficult.

BSR shows free gas at edge. of stability field

but provides no indication of hydrate above

seismics courtesy Anne Trehu, OSU

] Mississippi Canyon Block 118
1 AUV Chirp Sonar Lines

1 3x vertical exaggeration

Blanking zones, show hydrate or
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The BSR reflection is associated with small amounts of free gas - similar to the
“fizz-gas” problem in hydrocarbon exploration.
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Hydrate is electrically resistive, and so is a target for electromagnetic methods.
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Hydrate/gas concentrations have to be high to generate an electrical
signature - EM is a good tool to find the top of the pyramid.
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Laboratory studies of hydrate conductivity



Apparatus to synthesize methane hydrate in a conductivity cell.

HF-4 Port
to Mcthinc Supply

Kemlon K-15
Electrical Feedthrough

R >
N 1 / To LCR meter

AF-4 Port
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HiP TOC15-04 Assembly
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Temperature Bath

Du Frane et al., 2011



Synthesis of Methane Hydrate:
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Cryo-SEM is used to assess grain characteristics and phase distribution.

100 vol% CH,

100 vol% CH,
hydrate Hydrate
50 VOIO/O CH4 .
50 vol% ice:

hydrate:

50 vol% Sand 50 vol% sand

50 vol% CH, 10 vol% ice:
hydrate: 90 vol% sand
50 vol% glass
beads

Du Frane et al., 2015



Impedance spectroscopy and equivalent circuit models allow removal of

electrode effects:

-150

-125

-100

X (kQ)

Equivalent Circuit Model A
THT -
100 kHz

Run 3

R1 (kQ) 116(16) 100(4)

C1 (pF) 2.50(0.26) 3.56(0.14)

R2 (Q) Out of range Out of range

C2 (pF) 56.1(0.5) 69.4(0.8)

25 50 75 100 125 150

R (kQ)

Du Frane et al., 2011




Pure hydrate conductivity is 3-4 times lower than ice and well fit by Arrhenius
model.
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Du Frane et al., 2011



Mixed with silica sand, hydrate conductivity goes up until a percolation
threshold is reached. We think that impurities from the sand, probably K*
and CI-, increase the charge carriers available in the hydrate.

10°C 0°C -10°C -20°C
_30 | I I I Colors
_ Ratio of hydrate/ice to sand
b = 100:0 voI%
-3.5-

70..30 = 90:10 vol%
e 70:30 vol%

- 50:50 vol%
e 10:90 vol%

Du Frane et al., 2015



Mixed with silica sand, hydrate conductivity goes up until a percolation
threshold is reached. We think that impurities from the sand, probably K*
and CI-, increase the charge carriers available in the hydrate.

10°C 0°C -10°C -20°C
_30 | I I I Colors
_ Ratio of hydrate/ice to sand
b = 100:0 voI%
-3.5-

20:30 == 90:10 vol%

: 50/50 hydrate and = 70:30 vol%
= 50:50 vol%
= 10:90 vol%

Du Frane et al., 2015



Marine CSEM Methods



Controlled-source electromagnetic (CSEM) sounding:

CSEM Data
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With frequency domain CSEM, the entire air-sea-seafloor system is illuminated
continuously. Energy propagates preferentially in resistive rocks.
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Amplitude and phase of the magnetic/electric fields on the seafloor can
be used to infer geological structure to depths of several km.



The resolution of EM induction is between wave propagation and potential fields:

High frequency Wave equation: Resolution ~ wavelength
(megahertz) , 5 2
o OE 0°E . 5 Ou 1 0%
Radar V°E = uo 57 T He a0 Seismics V*u = €57 + 22
Mid frequency Diffusion equation: Resolution ~ size/depth
(0.001 - 1000 Hz)
Inductive EM VIE = o 2
ot
Zero frequency Laplace equation: Resolution ~ bounds only
e Gravity/
2 217 _
DC Resistivity VE =0 Magnetism VU =0

O = electrical conductivity ~ 3 — 107% S/m
I = magnetic permeability ~ 1074 — 10~¢ H/m
€ = electric permittivity ~ 1072 — 10~ F/m




Instrumentation:




The many uses of marine CSEM:

Mid-ocean ridges
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Hydrate Ridge Experiment



2004 pilot study at Hydrate Ridge
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2D inversion, using Schlumberger’s finite difference code
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High resistivity below the BSR corresponds to low seismic velocities -> free gas,
while high resistivity above the BSR suggests hydrate.
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Comparison of inversion resistivities with

well logs
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The Hydrate Ridge project was a success, but ...

There are a number of limitations with deployed seafloor receivers:
e Closely spaced receivers are costly in ship time and instruments
e Navigation errors increase with short source-receiver offsets

e There are still, inevitably, gaps in data coverage

This argues for a towed system.



The Vulcans



Bottom-dragged systems exist but
e Source-receiver offsets are limited
e Noise is high
e Fquipment losses are fregquent

e Only inline data are possible

www.whoi.edu/cms/files/revans/2006/2/
-. :55}5"9"" Source EM System 7927 pdf

Schwalenberg, et al., 2010


http://www.whoi.edu/cms/files/revans/2006/2/EM_System_7927.pdf
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The alternative is to fly an
array above the seafloor.
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But, noise induced by lateral motion
of cable in Earth’s magnetic field

E=vxB




Our modeling also showed that it would be worth recording the vertical
component of the electric field.
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In 2007, we developed “Vulcan” for fixed offset frequency sounding.

Vulcan:
Towed Ex,y,z Receiver

N

Deployed l—
Ex,y,z Bx,y Receivers

T

i seconds

Waveform-D has a broad spectrum



MC 118, Gulf of Mexico using seafloor instruments and towed receiver:
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Mississippi Canyon 118 6.5 Hz OBEM
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Under Fugro funding in 2011 we
developed Vulcan Mkl

SUESI - EM transmitter

Transponder for navigation
% Transponder for navigation “Vulcan” towed 3-axis receivers \
< K X
e — = = = =
= Y L L S
\////x\
=

/\ \ Seafloor EM receiver

e Reqal-time depth telemetry
® Redal-time data samples
® 3-Qxis accelerometer

® 1000+ meter offsets

* Timing pulse from transmitter



Power V 2/Hz

Voltage noise is comparable to our seafloor instrument. (But, dipoles
are 5-10 times shorter.)
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2015 Southern California Tests
A tale of two seeps

Work carried out by Peter Kannberg and supported by
OFG and BOEM



We have carried out two surveys, one targeting a known methane vent
called the Del Mar seep, and one covering most of the Santa Cruz Basin.
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The Del Mar seep is a methane
vent in the San Diego Trough,
studied by Scripps students. Itisin
a pop-up structure bounded by
two strands of the San Diego
Trough Fault.
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Maloney et al., 2015



Ryan et al. discovered this feature, in about 1,000 m water depth, and
predicted fluid or methane venting, since confirmed by ROV dives and

acoustics.
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We also obtained an uncalibrated signal on a Contros methane
sensor during an earlier CSEM test.
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In March 2015 we towed across the vent with a 500 m Vulcan
array, made a turn, and towed over it again.
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Navigation and
stability of the
receiver system is
important.
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Line 1 inversion shows a uniform seafloor except in the seep areaq.
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Frequencies of 1.5, 3.5, 6.5 Hz were fit for 3 Vulcans. Ey fits to 1% amplitude
and 0.6° phase. As predicted, there is a strong low-frequency signal in Ez.
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Addition of the vertical electric field data removes what appears to be
a layering artifact and brings out a conductor that may be fluids

feeding the vent.

Rho z, RMS: 0.9993 seep_|1_seepzoom_0p01tiz.9. resistivity, Folder: invd3_seepzoom_I1_v234_eyonly_errmat_0p01tiz_filtered_inv40restart
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Anisotropy (ratio of vertical to horizontal resistivities) is very high in the
northern part of the region inferred to be gas hydrate.
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Using Archie’ s Law, resistivity can be converted to hydrate
saturation. Integrating saturation provides an estimate of 2 billion

cubic meters of methane, or 0.07 icf.

Seep Line 1 Hydrate Saturation
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1
S, =1— ( afty ) where a=1, n=2, m=3, ¢:O.5
pmRy Rw = 0.300m, Rt = model resistivity
after Collet and Ladd, 2000



Santa Cruz Basin study: 21 seafloor
receivers and 6 Vulcan tow lines.
Water depths are over 2,000 m.
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Highest resistivities appear to be

on the flanks of the basin.

Line 1 Anisotropic

Rho z, RMS: 4.2 Inine ampiitude with 1% error fioor, vertcal ampltude with 2% error floor
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Line 2 Anisotropic
Rho z, RMS: 4.2954 Inline amplitude with 1% error floor, vertical amplitude with 3% error floor
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Line 3 Anisotropic

RAho z, RMS: 4.33 Inline ampltude with 1% error fioor, vertical ampliitude with 2% eror Soor
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It looks as though we have
discovered another seep.

Rho z, RMS: 3.33 Vuicans 2, 3, and 4, Inkne ampitude with 1% error floor, vertical amplitude with 3% error floor

Line 4 Anisotropic

Rho z. RMS: 4.5 Inline amplitude with 1% error floor, vertical amplitude with 2% error floor
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Line 5 Anisotropic
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Line 6 Anisotropic
Rho 2, RMS: 4.6 Inline amplitude with 1% error floor, vertical ampltude with 3% error floor
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Line 4 Anisotropic
Rho z, RMS: 3.33 Vukeans 2, 3, and 4, Inline amplitude with 1% error floor, vertical amplitude with 3% error floor

Wamammﬂmm

Santa Cruz Basin Seep
Vulkcans 1, 2, 3 and 4, lnline and Vemcal Anphmde 1% inline error, 2% vertical error
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~8 @ m resistor lies
entirely above the BSR,
while a resistor to the
east lies under (gas?)
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Hydrate potential

- 10 degree dipping beds
crossing the BSR
- seismic polarity reversal
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GLOBAL BUSINESS

An Energy Coup for Japan: ‘Flammable Ice’

By HIROKO TABUCHI MARCH 12, 2013

Gas flames being expelled from a bumner in a deep-sea drilling vessel in the Pacific off Japan. Jogmec, via European Pressphoto Agency

TOKYO — Japan said Tuesday that it had extracted gas from offshore deposits of
K4 Email methane hydrate — sometimes called “flammable ice” — a breakthrough that officials
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O F G Ocean Floor Geophysics Inc.
Ocean mining exploration services

Over 1,000 line-km of Vulcan survey have been carried out off Japan as
part of a national assessment of gas hydrate resources.

Ocean Floor Geophysics Inc.
Ocean Mining Exploration Services

PRESS RELEASE: Ocean Floor Geophysics Completes
CSEM Gas Hydrate Survey in Japan

October 234, 2014
PRESS RELEASE: Ocean Floor Geophysics Completes CSEM Gas Hydrate Survey In Japan

Ocean Floor Geophysics Ltd. (OFG), in cooperation with Fukada Salvage and Marine Works
Co. Ltd. (Fukada), has completed a high resolution CSEM survey of near surface gas hydrates
using the Scripps Institution of Oceanography Vulcan system for the National Institute of
Advanced Industrial Science and Technology (AIST) in Japanese waters. The survey
comprises over 500 line kilometers of high resolution data collected using the Fukada vessel
Shin Nichi Maru. Water depths were from 400 to 1100 meters. A 3D inversion of the EM
data for an area of Interest has been completed. The contract for the 3D inversion of the
data for the entire survey area has also been awarded to OFG and will be completed in
November this year. Fukada Salvage and Marine Works acted as prime contractor.

PRESS RELEASE: 2015 - Ocean Floor Geophysics

Completes Another CSEM Gas Hydrate Survey in Japan

August 30, 2015

PRESS RELEASE: Ocean Floor Geophysics Completes Another CSEM Gas Hydrate Survey in
Japan

Ocean Floor Geophysics Ltd. (OFG), in cooperation with Fukada Salvage and Marine Works
Co. Ltd. (Fukada), has completed another high resolution CSEM survey of near surface gas
hydrates using the Scripps Institution of Oceanography Vulcan system for the National
Institute of Advanced Industrial Sclence and Technology (AIST) in Japanese waters. Following
the successful 3D CSEM survey and inversion models completed in 2014, the 2015 survey
comprises over 670 line kilometers of high resolution data collected from the Fukada vessel
Shin Nichi Mary. A 30 inversion of the EM data for an area of interest for this year's survey
has been completed. The contract for the 3D inversion of the data for the entire 2015 survey
area has also been awarded to OFG and will be completed in November this year. Fukada
Salvage and Marine Works acted as prime contractor to AIST,




Inversion of the CSEM data will provide a better estimate of resource
potential than is possible with seismic/acoustic data alone.
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