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There is an old joke…



The production manager asked a geologist, engineer, 
and geophysicist what 2 + 2 was.



The production manager asked a geologist, engineer, 
and geophysicist what 2 + 2 was.

The geologist thought for a bit and then said 
“somewhere between 3 and 5”.



The production manager asked a geologist, engineer, 
and geophysicist what 2 + 2 was.

The geologist thought for a bit and then said 
“somewhere between 3 and 5”.

The engineer fiddled with a calculator and said 
“3.9999999”.



The production manager asked a geologist, engineer, 
and geophysicist what 2 + 2 was.

The geologist thought for a bit and then said 
“somewhere between 3 and 5”.

The engineer fiddled with a calculator and said 
“3.9999999”.

The geophysicist looked her in the eye and asked 
“what answer do you want”



It is notable that when once searching 
the web for this joke, I not only got the 
joke page of an oil price blog, but also 
the Wikipedia entry for “Inverse 
problem”. 

This says it all…

Today we will explore how the inverse 
problem can give you whatever model 
you want.



It is notable that when once searching 
the web for this joke, I not only got the 
joke page of an oil price blog, but also 
the Wikipedia entry for “Inverse 
problem”. 

This says it all…

Today we will explore how the inverse 
problem can give you whatever model 
you want.

Well, almost.



With seismic reflection images you can often see the geology in the data.

For EM and potential field methods you need inversion to recover something that 
can be interpreted as geology.

Same is true for seismic tomography and full waveform inversion.

Moore et al., 2007, Science.
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These are some 
marine controlled 
source electromagnetic 
CSEM data.  You can’t 
say much about 
geology just by looking 
at them.

Constable, Orange, and Key, 2015
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The same is true of magnetotelluric (MT) data…

Constable, Orange, and Key, 2015



With many modern inversion algorithms available, it is all-so-easy to input data 
and turn the crank to get a model.  
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One of the main messages of my talk is that models from geophysical inversion 
depend on much more than the data inputs:
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With many modern inversion algorithms available, it is all-so-easy to input data 
and turn the crank to get a model.  

One of the main messages of my talk is that models from geophysical inversion 
depend on much more than the data inputs:
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By the way… this still 
isn’t geology - it is 
density, conductivity, 
seismic velocity, etc.



Forward modeling:

model space
data

 space

m = (m1, m2, .....,mN )
x = (x1, x2, x3, ......, xkM )

d̂ = (d̂1, d̂2, d̂3, ....., d̂M )

d̂ = f(x,m)
Model parameters (layers, blocks, ...)

Independent variables (freqs.,  locations, ...)

Predicted data (gravity, magnetic, electric, ...)

Some forward functional f



Inverse modeling:

model space data
 space

d = (d1, d2, d3, ....., dM )
� = (�1, �2, ...,�M )
m

Given real (observed) data 
with errors

find an



There are several approaches to inversion: 

Stochastic 
Monte Carlo, Markov Chains 
Genetic Algorithms 
Simulated annealing, etc. 
     (Bayesian Searches) 

Deterministic 
Newton Algorithms 
Steepest descent 
Conjugate Gradients 
Quadratic (and Linear) Programming, etc. 

Analytical 
D+ (1D MT) 
Bilayer (1D resistivity) 
Ideal body theory in gravity and magnetism 



Stochastic methods: 

model space

data
 space

“acceptable” data
 space

A useful approach, largely restricted to simple problems (because millions of 
models required), with most of the subtlety in model generation methods.

The advantages are that (i) only forward calculations are made and (ii) some 
statistics can be obtained on model parameters.  Best for sparsely parameterized 
models.  One needs to be careful that bounds on explored model space don’t 
unduly influence the outcome.



Deterministic 
Newton Algorithms 
Steepest descent 
Conjugate Gradients 

model space

data
 space

“acceptable” data
 space

starting model

The direction of the search is determined by how changing parts of the model 
affects the fit to the data.



Analytical 
e.g. D+ (1D MT) and Bilayer (DC resistivity) 

model space

my data

best
fitting model

(guaranteed!)



These solutions are guaranteed best fitting but pathological.

MT

D+

Resistivity

Bilayer

MT: Delta functions of Resistivity: Arbitrarily thin surface layers�

We don’t know for sure, but least squares (LS) fits to higher dimensional models 
are probably also pathological.  

But we are pretty sure that true LS solutions are maximally “rough”.



What we have talked about so far is model construction.  For a great many 
geophysicists this is what they think of when inversion is mentioned.  More rigorous 
approaches try to obtain bounds on model properties - something that is true of all 
models.  The classic example is total mass from gravity:



Data

σ  model

Data errors
and misfit choice

Regularization

Priors/
constraints

geology  

Geophysical
inversion
algorithm

Model
Parameterization

So what constitutes an “adequate” fit to the data?



For noisy data (read: all data), we need a measure of how well a given model fits.  
Sum of squares is the venerable way:

⇥2 =
M⇤

i=1

1
�2

i

�
di � f(xi,m)

⇥2

�2 = ||Wd�Wd̂||2

W = diag(1/�1, 1/�2, ...., 1/�M ) .

or

where W is a diagonal of reciprocal data errors



For noisy data (read: all data), we need a measure of how well a given model fits.  
Sum of squares is the venerable way:

⇥2 =
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1
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i

�
di � f(xi,m)
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�2 = ||Wd�Wd̂||2

W = diag(1/�1, 1/�2, ...., 1/�M ) .

or

where W is a diagonal of reciprocal data errors

I like to remove the dependence on data number and use RMS:

RMS =
p

�2/M .

The instinctive approach as this point is to minimize       . 

This is least squares. 

�2



For noisy data (read: all data), we need a measure of how well a given model fits.  
Sum of squares is the venerable way:

⇥2 =
M⇤

i=1

1
�2

i

�
di � f(xi,m)

⇥2

�2 = ||Wd�Wd̂||2

W = diag(1/�1, 1/�2, ...., 1/�M ) .

or

where W is a diagonal of reciprocal data errors

I like to remove the dependence on data number and use RMS:

RMS =
p

�2/M .

The instinctive approach as this point is to minimize       . 

This is least squares.  In geophysics, this is dangerous!

�2



Why is this dangerous?  Because as you try to approach the LS solution, your 
model tries to approach the maximally rough, pathological LS solutions, even if 
your model space does not contain delta functions, etc.



Existence and Uniqueness: Is there a solution to the inverse problem?  Is 
there only one solution? 

Finite noisy data for a linear problem (say, gravity) 
An infinite number of solutions fit the data 

Finite noisy data for a nonlinear problem 
Either zero or an infinite number of solutions fit the data 

Infinite exact data 
A unique solution has been shown to exist for a 
few cases.   Probably true in general but … who cares?   

Some people think that we can approach infinite exact data with LOTS of 
VERY GOOD data.  This is wrong.  As Sven Treitel puts it, there is no such 
thing as being a little bit non-unique. 



Geophysical inversion is non-unique:

A single misfit will map into an infinite number of models (or none at all!).

�2
model space

misfit
 space



It is also usually poorly constrained:

model space

A small distance in       corresponds 
to a large distance in m

�2

�2

misfit
 space

(And don’t forget: the minimum      
is likely outside your model 
parameterization).   

�2



So what constitutes an adequate misfit?

For zero-mean, Gaussian, independent errors,       is chi-squared distributed with M 
degrees of freedom.  The expectation value is just M, which corresponds to 
RMS=1, and so this could be a reasonable target misfit.  Or, one could look up the 
95% (or other) confidence interval for chi-squared M.

RMS = 1 RMS = 1.36

We could use other measures of fit, but the quadratic measure works with the 
mathematics of minimization, and for Gaussian errors has nice statistical properties 
(unbiased, maximum likelihood, minimum variance).  But...

     for 14 data.  For large data 
sets, RMS=1 and RMS95% are 
very much the same.

�2

�2



... sum-squared misfit measures are unforgiving of outliers:    

With Gaussian noise, the probability of a data point being misfit by 6 error bars is 
about one in a billion.  

All through any inversion process you should monitor weighted residuals
to ensure that there are no bad guys out there.

With 5% error bars this 
data point has the same
weight as 40,000 other data   
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It is also a good idea to 
look at how the misfit is 
partitioned across the 
data:

Ideally it should be 
random, but in practice 
very rarely is.

Example is from  MT 
data.

PhD thesis, Brent Wheelock, 2012.



Errors come from 

• statistical processing errors (spectral estimation for MT; stacking for CSEM and 
lots of other methods)

• systematic errors such as navigation errors and instrument calibrations, and 

• “geological noise” (our inability to parameterize fine details of geology).

In practice, we only have a good handle on processing errors - everything else is 
lumped into a noise floor, which can be pretty arbitrary at times.

(modified from Myer et al., 2012)
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So we are often left without statistical guidance and have to use judgement 
in determining an adequate fit.  Some people like trade-off, or “L”-curves...

RMS 1.4
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… but I am not one of them.



There really isn’t an objective way to choose misfit level except through a 
good understanding of the data errors. 
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In fact you can get pretty well what you want simply by changing the range 
of the plot and the scaling of the axes.

Constable, Orange, and Key, 2015
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Model parameterization:



model
space

data
 space

Best fit 

real 
world 

Even with your best efforts, the real world is unlikely to be captured by your model 
parameterization, and the best fitting model almost certainly won’t be either.  
Understanding this can be important.

(And the best fitting model won’t have the same misfit as the real world does, 
because of noise.)



model space

data
 space

1D 

3,4D 

2D 

Where in model space you are is determined by your parameterization - this also 
determines where in data space you can be.

In non-linear geophysical problems, even forward modeling can involve a 
challenging computational effort.



Sven Treitel once asked the question: “Can our mathematics ever completely 
describe nature?”. 

The trite answer, of course, is “No”.  However, it is more useful to understand the 
nature of the limitations: 

Are the physics sufficient (e.g. scalar properties versus anisotropy)? 

Is the forward computational machinery accurate? (e.g. finite  
difference calculations don’t handle bathymetry well) 

Is the dimensionality of model space large enough? (1D, 2D, 3D, 4D) 

Is the discretization fine enough and the model size big enough? 

One can rarely afford to blindly ensure these are all achieved, so intelligence and 
understanding must be applied, perhaps by trial and error.  

 



d̂ = f(x,m) Some forward functional f

m = (m1, m2, .....,mN ) Model parameters

Model space parameterization:

Most geophysical properties cannot go negative, but your inversion scheme 
might well generate negative values in m.   The easiest way to handle this is by 
parameterizing as log(m),  but there are other ways, such as NNLS.



In the real world, N (model size) is infinite (even in 1D).  How we proceed from here 
depends on whether N is small, moderately large, or infinite.  

Small (sparse) parameterizations can be handled with parameterized inversions 
(e.g. Marquardt) or stochastic inversions.  The concept of least squares fitting 
works because sparse models don’t have the freedom to mimic the pathological 
true least squares solutions.
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Model space parameterization:



In the real world, N (model size) is infinite (even in 1D).  How we proceed from here 
depends on whether N is small, moderately large, or infinite.  

Small (sparse) parameterizations can be handled with parameterized inversions 
(e.g. Marquardt) or stochastic inversions.  The concept of least squares fitting 
works because sparse models don’t have the freedom to mimic the pathological 
true least squares solutions.

Infinite N requires a real inverse theory mathematician.  I am not one of them.

d̂ = f(x,m) Some forward functional f

m = (m1, m2, .....,mN ) Model parameters

Model space parameterization:



In the real world, N (model size) is infinite (even in 1D).  How we proceed from here 
depends on whether N is small, moderately large, or infinite.  

Small (sparse) parameterizations can be handled with parameterized inversions 
(e.g. Marquardt) or stochastic inversions.  The concept of least squares fitting 
works because sparse models don’t have the freedom to mimic the pathological 
true least squares solutions.

Infinite N requires a real inverse theory mathematician.  I am not one of them.

Most of the time geophysicists are working with moderately large N.   Also, many 
geophysical problems are non-linear, so we will concentrate on that approach.

d̂ = f(x,m) Some forward functional f

m = (m1, m2, .....,mN ) Model parameters

Model space parameterization:



To invert non-linear forward problems we often linearize around a starting model: 

d̂ = f(m1) = f(m0 + �m) � f(m0) + J�m

Jij =
⇥f(xi,m0)

⇥mj

�m = m1 �m0 = (�m1, �m2, ...., �mN )

�2 ⇥ ||Wd�Wf(m0) + WJ�m||2

using a matrix of derivatives 

and a model perturbation

Now our expression for       is�2



For a least squares solution we solve in the usual way by differentiating and setting 
to zero to get a linear system: 

where

So, given a starting model        we can find an update         :

⇥ = ��m

� = (WJ)T W(d� f(m0))

� = (WJ)T WJ .

m0 �m

�m = ��1⇥

and iterate until we converge.  (This is Gauss-Newton.)



Global versus local minima: 

For nonlinear problems, there are no guarantees that Gauss-Newton will 
converge. 

There are no guarantees that if it does converge the solution is a global one. 

The solution might well depend on the starting model.

local minimum global minimum
(maybe)

�2



Global versus local minima: 

For nonlinear problems, there are no guarantees that Gauss-Newton will 
converge. 

There are no guarantees that if it does converge the solution is a global one. 

The solution might well depend on the starting model.

local minimum global minimum
(maybe)

�2

Gauss-Newton only works for small N (it isn’t even defined for N > M).  If N gets 
too large then the solutions become unstable, oscillatory, and generally useless 
(they are probably trying to converge to D+ type solutions).   



where          is some measure of the model and     is a trade-off parameter or 
Lagrange multiplier.  In 1D a typical      might be:R

Almost all inversion today incorporates some type of regularization, which 
minimizes some aspect of the model as well as fit to data:

Rm µ

R1 =

�

⇧⇧⇧⇧⇧⇧⇧⇤

�1 1 0 0 0 . . . 0
0 �1 1 0 0 . . . 0
0 0 �1 1 0 . . . 0

. . . . . .

�1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌅

which extracts a measure of slope.  This stabilizes the inversion, creates a single 
solution, allows N > M,  and manufactures models with useful properties. 

This is easily extended to 2D and 3D modeling.
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U =
�
||Wd�Wf(m)||2

�
+ µ||Rm||2



When     is small, model roughness is ignored and we try to fit the data.  When     is 
large, we smooth the model at the expense of data fit. 

µ µ
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�
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�
+ µ||Rm||2

The trade-off between roughness and misfit:



When     is small, model roughness is ignored and we try to fit the data.  When     is 
large, we smooth the model at the expense of data fit. 

One approach is to choose     and minimize      by least squares, but picking      a 
priori  is simply choosing how rough your model is.
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priori  is simply choosing how rough your model is.
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We ought to have a decent idea of how well our data can be fit.  This forms the 
basis of the “Occam” approach, where a target data misfit        is chosen:      
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When     is small, model roughness is ignored and we try to fit the data.  When     is 
large, we smooth the model at the expense of data fit. 

One approach is to choose     and minimize      by least squares, but picking      a 
priori  is simply choosing how rough your model is.

µ U

µ µ

We ought to have a decent idea of how well our data can be fit.  This forms the 
basis of the “Occam” approach, where a target data misfit        is chosen:      

µ

U =
�
||Wd�Wf(m)||2

�
+ µ||Rm||2

�2
�

U =
�
||Wd�Wf(m)||2 � �2

⇤
�

+ µ||Rm||2

U = ||Rm1||2 + µ�1
�
||Wd�W

�
f(m0) + J(m1 �m0)

⇥
||2 � ⇥2

⇥
⇥

m1 =
�
µRT R + (WJ)T WJ

⇥�1(WJ)T W(d� f(m0) + Jm0) .

For linearized, iterative inversion we use

After differentiation and setting to zero we get an expression for a new model:

The trade-off between roughness and misfit:



one parameter

Sum-square misfit
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least squares model
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If the Occam algorithm does not get hung up in a local minimum, it will converge to 
the smoothest model for a given misfit.

It is important to run the inversion to convergence, and not stop as soon as the 
target misfit is achieved. 



  

I will step through a joint 2D Occam inversion of marine CSEM (3 frequencies, no 
phase) and marine MT (Gemini salt prospect, Gulf of Mexico):
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Rho y, RMS: 2.4027  Gemini_joint_inv_2pt4_a.5.resistivity
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Rho y, RMS: 2.3993  Gemini_joint_inv_2pt4_a.6.resistivity
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Rho y, RMS: 2.3982  Gemini_joint_inv_2pt4_a.7.resistivity
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Rho y, RMS: 2.3974  Gemini_joint_inv_2pt4_a.8.resistivity
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Rho y, RMS: 2.398  Gemini_joint_inv_2pt4_a.9.resistivity
 Folder: 40                                             
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Rho y, RMS: 2.402  Gemini_joint_inv_2pt4_a.10.resistivity
 Folder: 40                                              

 

 

8
  3178157N
   337657E

10
  3179571N
   339071E

12
  3180985N
   340485E

14
  3182399N
   341899E

16
  3183814N
   343314E

18
  3185228N
   344728E

20
  3186642N
   346142E

22
  3188056N
   347556E

24
  3189471N
   348971E

26
  3190885N
   350385E

0

2

4

6

8

10

12

lo
g1

0(
oh

m
−m

)

−1

−0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

Iteration number

Ro
ug

hn
es

s

0 2 4 6 8 10 12

2

4

6

8

10

Iteration number

RM
S 

m
isf

it

 

 

CSEM
MT

All



D
ep

th
 (k

m
)

Rho y, RMS: 2.4008  Gemini_joint_inv_2pt4_a.11.resistivity
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Why do we start from a half-space?  Because J depends on m.

MT: misaligned starting resistor - no harm done

Courtesy David Myer.



misaligned starting conductor - forever trapped by J

Courtesy David Myer.
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Even with well-estimated errors, choice of misfit can still be somewhat subjective.

Constable, Orange, and Key, 2015
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What about anisotropy?  It is quite common for physical properties of sediments 
to be different in the vertical and horizontal directions.   For example, horizontal 
resistivity        is often smaller than vertical resistivity       . 

The problem is how to weight the penalty between the two models.

⇢z⇢h
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Joint Anisotropic Inversions versus penalty between rho-y and rho-z (all fitting to 
RMS 1.2):

Low weight (0.1), 
models are 

independent.  

⇢h ⇢h ⇢h

⇢z ⇢z ⇢z

Medium weight (1), 
models look sensible.  

High weight (10), 
models are identical.  

Constable, Orange, and Key, 2015
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Model
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There are many ways to choose how to regularize the problem, and this 
matters too.



For a given misfit,  the model depends on R
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You can have fun with cuts (removing a row of R):
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You can have fun with cuts (removing a row of R):
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Sparsely parameterized model does well! (Why?)



In 2D:

Inverted with isotropic smoothing

Inverted with 1st-difference

Synthetic Model

default regularization generates
a conductive artifact Courtesy Brent Wheelock.



Always remember that regularization has an input into the model solution.  Both 
of these MT models fit the data equally well.

R1 =

�

⇧⇧⇧⇧⇧⇧⇧⇤

�1 1 0 0 0 . . . 0
0 �1 1 0 0 . . . 0
0 0 �1 1 0 . . . 0

. . . . . .

�1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌅

A nonlinear and adaptive 
R, providing little 
penalty for big contrasts

Courtesy David Myer.

Default R:



Can we place errors or uncertainties on regularized models?

No!

For sparse parameterizations, data errors are often projected onto model 
parameters through the Jacobian.  This is a dangerous practice because

• it depends on the parameterization

• the Jacobian depends on the solution



Can we place errors or uncertainties on regularized models?

No!

For sparse parameterizations, data errors are often projected onto model 
parameters through the Jacobian.  This is a dangerous practice because

• it depends on the parameterization

• the Jacobian depends on the solution

For regularized models, however, we compound this by generating huge amounts 
of covariance between the model parameters as part of the smoothness constraint.  
It is much more useful to think of regularized models as extremal solutions, and 
vary the regularization to ask the questions you may have.

Stochastic methods provide a useful way to assess model uncertainty, but they are 
still restricted to simple, mostly 1D, models.



More on errors and regularization:
Regularized Fits to f(x) = 1.0x + 1.0

When creating synthetic data 
for inversion tests, always 
perturb the data with noise, 
don’t just add error bars.

This is because regularized 
inversion will use its misfit 
budget to make the model 
smaller.

You actually get better 
models by adding noise.

Constable, 1991
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It can even matter how you scale the data.



In EM, both MT apparent resistivities and CSEM amplitudes can vary by many orders 
of magnitude.  This suggests that one should use error floors that are percentages. 

One might also parameterize the data as logs.  For small   :

where 

d0 ± 0.434✏ = log10(d± ✏d)

0.434 = 1/ ln(10)

✏

linear
data 

fractional
error 

log data
data 



In EM, both MT apparent resistivities and CSEM amplitudes can vary by many orders 
of magnitude.  This suggests that one should use error floors that are percentages. 

One might also parameterize the data as logs.  For small   :

where 

It ought not to matter how you parameterize the data (so long as the errors are 
properly scaled and the appropriate chain rule is applied to the Jacobian):

d0 ± 0.434✏ = log10(d± ✏d)

0.434 = 1/ ln(10)

✏

m1 =
�
µRT R + (WJ)T WJ

⇥�1(WJ)T W(d� f(m0) + Jm0) .

linear
data 

fractional
error 

log data
data 

make data
log

take the log
of the forward

model

use the chain
rule to convert

to                      @d/@m @ log(d)/@m



In EM, both MT apparent resistivities and CSEM amplitudes can vary by many orders 
of magnitude.  This suggests that one should use error floors that are percentages. 

One might also parameterize the data as logs.  For small   :

where 

It ought not to matter how you parameterize the data (so long as the errors are 
properly scaled and the appropriate chain rule is applied to the Jacobian):

But ...

d0 ± 0.434✏ = log10(d± ✏d)

0.434 = 1/ ln(10)

✏

m1 =
�
µRT R + (WJ)T WJ

⇥�1(WJ)T W(d� f(m0) + Jm0) .

linear
data 

fractional
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log data
data 



... it does.  Consider misfits in marine CSEM data:

 

.9 x 10-10 (linear) or 1 (log)

.9 x 10-11  (linear) or 1 (log)

in the linear domain, this misfit is 10 times 
bigger than the other one



.99 x 10-11 (linear) or 2   (log)
.9 x 10-11  (linear) or 1 (log)

in the linear domain, this misfit is only 10% 
bigger than the other one

 

... it does.  Consider misfits in marine CSEM data:
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Here we consider MT data 
over a half-space, varying 
only half-space resistivity R.  

⇤ =
1

2⇥fµ
|Z|2

E
x

= ZH
y

Recall that MT impedance 
(Z ) is:

For small R, misfit flattens for 
linear �

(modified from Wheelock et al., 2015)



(d� f(m))! const.

f(m)! 0

( log d� log f(m))

This is because

as                        but

does not.
Horizontal Position (km)

De
pth

 (k
m)

 

 

♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

1
234567891011121314151617181920

−180 −160 −140 −120 −100 −80 −60 −40 −20 0

−6

−4

−2

0

2

4

6

8

10
Seafloor

Air

10 −1 10 0 10 1 10 2 10 3 10 4

10 0

10 1

10 2

10 3

Halfspace Resistivity
RM

S M
isfi

t

True Model
90 Ωm

linear rho, phase
impedance, phase
log rho, phase

Here we consider MT data 
over a half-space, varying 
only half-space resistivity R.  
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Recall that MT impedance 
(Z ) is:

For small R, misfit flattens for 
linear �

(modified from Wheelock et al., 2015)



This effect can be even worse 
for marine MT data affected by 
bathymetry.

Local minima develop, and 
misfit flatlines at low R.
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(modified from Wheelock et al., 2015)



Truth

log10(ρa), ΦZ ,  5%, 10 Ωm, 11 iter.

log10(ρa), ΦZ ,  10%, 10 Ωm, 14 iter. ρa, ΦZ ,  10%, 1000 Ωm, 24 iter.

100 Ωm

    5 Ωm

   ρa, ΦZ ,  5%, 10 Ωm, 21 iter.

Z, 5%, 10 Ωm, d.n.c. 

(modified from Wheelock et al., 2015)

Here is a 2D example.  Linear apparent resistivity and phase converged, but 
log(resistivity) converges to the same model in half the iterations.  MT 
impedance, Z, did not converge (d.n.c) at all.



So I hope I have convinced you that models from geophysical inversion depend 
on much more than the data alone:
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So I hope I have convinced you that models from geophysical inversion depend 
on much more than the data alone:
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Does this mean that geophysical inversion is useless?
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Not at all!  There is plenty of evidence that geophysical inversion works very 
well.  You just have to know what you are doing, how your code and algorithm 
work, and pay attention to the factors besides the data that determine the 
result.

And, you will probably need to run more than one inversion… many more.



Connecting the world of applied geophysics








