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S U M M A R Y
Non-linear inversion algorithms traverse a data misfit space over multiple iterations of trial
models in search of either a global minimum or some target misfit contour. The success of
the algorithm in reaching that objective depends upon the smoothness and predictability of
the misfit space. For any given observation, there is no absolute form a datum must take,
and therefore no absolute definition for the misfit space; in fact, there are many alternatives.
However, not all misfit spaces are equal in terms of promoting the success of inversion. In this
work, we appraise three common forms that complex data take in electromagnetic geophysical
methods: real and imaginary components, a power of amplitude and phase, and logarithmic
amplitude and phase. We find that the optimal form is logarithmic amplitude and phase.
Single-parameter misfit curves of log-amplitude and phase data for both magnetotelluric and
controlled-source electromagnetic methods are the smoothest of the three data forms and do
not exhibit flattening at low model resistivities. Synthetic, multiparameter, 2-D inversions
illustrate that log-amplitude and phase is the most robust data form, converging to the target
misfit contour in the fewest steps regardless of starting model and the amount of noise added
to the data; inversions using the other two data forms run slower or fail under various starting
models and proportions of noise. It is observed that inversion with log-amplitude and phase
data is nearly two times faster in converging to a solution than with other data types. We also
assess the statistical consequences of transforming data in the ways discussed in this paper.
With the exception of real and imaginary components, which are assumed to be Gaussian,
all other data types do not produce an expected mean-squared misfit value of 1.00 at the true
model (a common assumption) as the errors in the complex data become large. We recommend
that real and imaginary data with errors larger than 10 per cent of the complex amplitude be
withheld from a log-amplitude and phase inversion rather than retaining them with large
error-bars.
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1 I N T RO D U C T I O N

Inversion is a central activity within the field of geophysics. It is the
method by which measurements, often taken at or near the surface of
the earth, are converted into a model for the distribution of material
properties within the earth. This task of producing an earth model
is often posed as an optimization problem, with a primary objective
of reproducing, with some prescribed level of fidelity, a finite set
of measurements. In the parlance of linear vector spaces, these
measurements may be arranged into a data vector, d ∈ R

N , and
the distribution of earth properties into a model vector, m ∈ R

M .
Then, given a mapping which transforms a point in model space
into a point in data space, the general goal of inversion is to find
the point m that maps as closely as possible to d; the mapping is

provided by the specific physics involved in the measurement, and
is appropriately called the forward calculation. The data vector may
take multiple forms. All forms are derived from the same set of
observations, but each may change the mapping, in turn changing
the nature of the inverse problem. The only requirement in selecting
the form in which a set of data will be inverted is that the forward
calculation and the optimization method are modified accordingly.

Many geophysical processes are described in the form of com-
plex Fourier coefficients of some transfer function, estimated from
multiple time-series of observations. Such data can then be anal-
ysed in various forms, each packaged as pairs of complementary
components. The basic three options we consider in this paper are:
(1) real and imaginary components; (2) amplitude, raised to any
power greater than zero, and phase; and (3) logarithmic amplitude
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and phase, following from the definition of the logarithm of a com-
plex number, where if z = rexp (iθ ), then ln z = ln r + iθ , for
−π < θ ≤ π . With magnetotelluric (MT) measurements, for exam-
ple, these three forms translate to real and imaginary impedance,
apparent resistivity and phase and logarithmic apparent resistivity
and phase. All three forms are related by simple closed-form ex-
pressions, yet they differ, sometimes dramatically, in their effect on
an inversion.

In this paper, we compare the effect that these different forms
of data have on the course of an inversion, using synthetic MT
and controlled-source electromagnetic (CSEM) data as examples,
both treated in the Fourier-domain. The main MT data type we will
discuss is impedance, a rank 2 tensor relating the naturally time-
varying horizontal electric and horizontal magnetic field vectors
measured at a point on the surface of the earth. In the CSEM
example, each datum will be a single horizontal component of the
electric field, measured at some offset from, and parallel to the
moment of, a powered, time-varying, electric-dipole transmitter.
Our aim is to determine the optimal form for these complex data
by measure of the qualities that lead to fast and robust inversion.
While the following illustrations make use of electromagnetic data,
the statistical treatment in Section 4 is universal, and the advantages
we discuss in other sections may extend to the inversion of other
types of observations which exhibit a large dynamic range, either
based in the frequency- or time-domain.

2 A S Y N T H E T I C M T S T U DY

To highlight the differences between our three data forms, we wish
to investigate conditions that impose high demands on non-linear
inversion. We will use MT data which contain discontinuities and
exhibit large dynamic range across frequencies. These are the sort
of exotic symptoms that a coastline can produce in MT data. The
‘MT coast effect’, as it has become known, is a phenomenon ob-
served particularly in marine MT data, in the vicinity of the coast-
line of a relatively resistive continent (e.g. Cox 1980; Constable
et al. 2009; Key & Constable 2010; Worzewski et al. 2012). Within
2-D earth models, the following have been established as signatures
of the MT coast effect: TE-mode phases that progress through all
four quadrants, wrapping from −180◦ to 180◦ at some characteris-
tic frequency; a cusp in the TE-mode apparent resistivity centered
on the same characteristic frequency; and a broad-band depres-

sion of the TM-mode apparent resistivity relative to the expected
value in the absence of a coast (Fig. 2). Historically, MT impedance
phases that fell outside of the first quadrant had been considered
unusual at the very least, if not cause to suspect 3-D structure or
anisotropy in the subsurface (e.g. Egbert 1990; Weidelt & Kaikko-
nen 1994). Lately, ‘out-of-quadrant’ behaviour has been shown to
be typical of thinly sedimented coastal marine data, and numerical
modelling studies have proven that isotropic 2-D structure can yet
permit it. Key & Constable (2010) calculate the Poynting vector of
MT energy near the coastline in a 2-D model and illustrate that the
TE-mode coast effect is a result of a localized reversal in the dif-
fusion direction from downward to upward. Similar behaviour has
also been observed in land-based MT data at the lateral edge of
a thin surface conductor, and again 2-D numerical modelling con-
firmed it to be caused by a reversal in the standard MT diffusion
direction (Selway et al. 2012). In this section, we will use synthetic
MT measurements from a simple model purposefully designed to
mimic the strong MT coast effect observed in a marine data set col-
lected off the coast of central California (Wheelock 2013). We will
then show that the wide dynamic range and extremely non-linear
behaviour observed in TE-mode MT data call for special treatment
in an inversion process, favouring one form of data above the others.

Fig. 1 depicts the simple 2-D coast model we use in this study
of data forms. It has a gradual continental slope which levels out
to a 4 km deep ocean, with seawater conductivity of 0.3 �m. The
model has a uniform subseafloor resistivity which we will vary over
multiple forward calculations. At each of the 20 seafloor sites we
will calculate the MT quantities of impedance tensor, Z, and vertical
magnetic transfer function, or tipper, V [for more background on
these MT measurements, consult Chave & Jones (2012)].

Figs 2 and 3 contain plots of two separate calculations from our
simple coast model using two different seafloor resistivities, 90 and
115 �m [the calculations were made with the finite-element algo-
rithm described in Wannamaker et al. (1987)]. These figures also
show the 1-D values which correspond to models with the same
seafloor resistivities but with no coast. Without dwelling on the
physics of the coast effect, the point we make here is that coastlines
create unique effects in the apparent resistivity, phase, and tipper
data which vary in an extremely non-linear way with respect to the
conductivity of the earth; this is particularly true with the TE-mode
impedance and tipper. For example, Fig. 4 shows the variation of
the TE-mode apparent resistivity at site 5, about 45 km away from

Figure 1. Model with a simple coast and uniform seafloor used in synthetic misfit study. The black diamonds indicate locations of hypothetical MT receivers
labelled by site number.
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Figure 2. MT apparent resistivity and phase calculations for site 12 in the model pictured in Fig. 1. Two uniform seafloor resistivities were used: 90 �m (solid
lines) and 115 �m (dashed lines). The black lines plot the respective values for models with equivalent seafloor resistivities but no coast (i.e. purely 1-D), in
which case TE and TM modes are equivalent, and the phase is always 45◦.

Figure 3. MT tipper calculations for site 12 in the model pictured in
Fig. 1. Two uniform seafloor resistivities were used: 90 �m (solid lines) and
115 �m (dashed lines). The black lines plot the respective values for models
with equivalent seafloor resistivities but no coast (i.e. purely 1-D), in which
case all tippers are exactly zero.

the coastline, as a function of seafloor resistivity. The progression
in Fig. 4 highlights that the functional derivative with respect to
resistivity is not monotonic for all frequencies. Such variable be-
haviour creates difficulty for most non-linear inversion algorithms
which rely on a linear approximation to predict how a change in any
given model parameter will affect a fit to the data. In contrast, the
functional derivative with respect to the subsurface parameter for
the analogous model without a coast (e.g. the black lines in Figs 2
and 3) can be shown to be monotonic (and, in the case of apparent
resistivity, frequency independent), and therefore more predictable.
Accordingly, we might guess that the a coast-free version of this
single-parameter system presents far less of a challenge for an in-
version algorithm.

In Section 2.2, we employ the Occam inversion algorithm
(Constable et al. 1987), which, along with other non-linear deter-
ministic algorithms (e.g. NLCG, ref. Appendix A), finds an optimal
model by traversing the misfit space in a consistently downhill fash-
ion (i.e. always in a direction of decreasing misfit). Due to this
manner of progression, there are a few properties of misfit spaces

Figure 4. Variation in TE-mode apparent resistivity, at site 5 in Fig. 1, as a
function of seafloor resistivity.

that improve the performance of deterministic inversion schemes.
We list these properties in the following paragraphs.

First, for the sake of argument, let us make the common assump-
tion that the ‘true’ model maps into the global minimum in misfit
space, regardless what form the data take. Given that, a determin-
istic inversion scheme has the best chance of recovering the ‘true’
model when a chosen misfit space, determined by the form of the
data and the misfit functional, has the fewest number of minima,
preferably only one. This is because deterministic inversion algo-
rithms have no explicit mechanism for escaping local minima, as
would, for example, a stochastic inversion method which may ac-
cept models in successive iterations that amount to an increase in
misfit. Deterministic inversion methods greedily march in the di-
rection of decreasing misfit until such a direction can no longer be
found (i.e. the conditions of a local minimum); under such condi-
tions, the current position in model-space is accepted as the final
solution. However, it should be noted that the Occam algorithm is
not necessarily impeded by a local minimum in data misfit because,
within each iteration, Occam is not beholden to a single objective-
function space. This is the space comprised of a weighted sum of
the misfit-norm and the model-norm, where the relative weighting
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is provided by a Lagrange (or ‘trade-off’) parameter. By varying
the Lagrange parameter within each iteration, the Occam algorithm
repeatedly changes which objective function it probes, providing an
opportunity to lever itself out of what might be a local minimum in
the data misfit space on its own. While it is not guaranteed that all
model norms will provide the proper lever, the lost possibility of
dodging local minima provides a strong argument against holding
the Lagrange parameter fixed. Nonetheless, with fewer local min-
ima in the data misfit space, any algorithm’s prospects for finding
the true model are improved.

Secondly, the uncertainties of the final model parameters result-
ing from inversion are smaller when the misfit surface surrounds
the global minimum with steep walls; this is the literal origin of the
phrase ‘tightly constrained’. The steeper the walls in the misfit sur-
face, the greater the increase in misfit as the model parameters stray
from the final value. This leaves a narrower range of model space
which may produce practically the same fit to the data, bestowing
greater certainty to the final model.

Lastly, the misfit value of the true model must meet a statis-
tically significant value, given the probability distributions of the
data, so that one is aware when they have achieved a probable fit
to the data set. This, of course, hinges upon the adequacy of the
preceding estimation of data errors. In practice, the residuals from
an inversion’s final data fit rarely conform to the co-distribution of
random errors assumed to exist in the data before inverting them.
When this happens, either an improper statistical model was as-
sumed or an improper physical model was used to describe the
system which created the data. Often, it is the latter deficiency
which affects geophysical inversion; finite computer simulations
can rarely encompass the full detectable complexity of the earth.
Acknowledging this, the goal in this paper is to isolate the former of
these two effects through synthetic inversion, in which the physical
model is guaranteed to be complete. We seek to understand how our
three forms of data influence statistical expectations, independent
of the physics which underly a real measurement, and the degree of
accuracy with which they are modelled.

2.1 1-D misfit space

We now examine plots of the misfit spaces derived from our simple
coast model with data packaged in a variety of possible subsets and
forms. The intent is to appraise the misfit spaces of these different
data packages in terms of the aforementioned properties that fa-
cilitate success for a deterministic algorithm. The following misfit
spaces are 1-D, that is they vary with only one model parameter
(M = 1). Low-dimensionality, while not representative of regular-
ized inversion, where M � N with N representing the number of
data, makes the misfit spaces amenable to plotting and analysis.
We expect some of the differences observed between data types
to carry over to higher dimension problems, as we will show with
some highly parametrized synthetic inversions in Section 2.2.

The misfit spaces are computed in the following way. We choose
one seafloor resistivity to be the true model. MT forward calcula-
tions are made for the true model and independent Gaussian noise
is added to the real and imaginary components of the impedance
tensors and the tipper vectors to create synthetic data. The standard
deviation of the pseudo-random, Gaussian errors are scaled to a
percentage of amplitudes |Z| and |V|, for Z and V, respectively; this
ensures that the real and imaginary parts of each synthetic datum
are jointly distributed with a probability distribution that is circu-
larly symmetric in the complex plane, an assumed characteristic of

measured data. Note there are cases of geophysical measurements
where this assumption does not hold (e.g. Myer et al. 2012). Next,
MT forward calculations are made over many models that span a
range of seafloor resistivities. These serve as the model predictions
made by the forward functionals, fi [m] for i = 1, . . . , N. For each
of these predictions, a normalized root-mean-square (rms) misfit is
computed relative to our synthetic data. The rms misfit is defined
as:

X rms =
√√√√ 1

N

N∑
i=1

(di − fi [m])2/σ 2
i , (1)

where di are the data, and σ i estimates of their standard deviation.
Making use of the formula for the expectation value E[||X||], derived
for the standardized random vector X in Parker (1994), we may
bound the expected misfit with

E[X rms] ≤ 1 − 1

4N
+ 1

32N 2
+ O(N−3). (2)

For each of the data forms, we compare the misfit spaces of their
individual data components. The total number of MT data used in
this example produces an N = 2040. For each conglomeration of
data in subsequent plots, N is large enough that we expect the rms
misfit to be very close to 1 at the true model. Yet, (2) assumes the
elements of X are Gaussian-distributed. While we assume this is true
for complex impedance and tipper data, in Section 4 we show that
with our transformed data this assumption progressively deteriorates
as the relative magnitude of noise increases. Nonetheless, for the
levels of noise added to the data in this section, the rms misfit at the
true model should still be very close to 1.00.

Figs 5–7 depict the results of the misfit space calculations. The
initial observation, common to all plots of the TE mode (left column
in Figs 5 and 6), is that the solid red lines are much more jagged
with multiple local minima than the other curves; the solid red lines
of the TM mode have local minima as well, but far fewer, making
their curves much smoother. The red lines relate to impedance data
in the form of apparent resistivity, which we have shown form steep
cusps in the TE mode spanning many orders of magnitude (Figs 2
and 4). By the criteria just discussed, apparent resistivity data are
the worst option for MT inversion near a coast, and we infer the
cause to be the large dynamic range, and unique non-linear nature
of the TE mode. The solid orange lines, representing absolute tipper
magnitude, are also quite rough, perhaps unsurprizing in light of
the similarly dramatic variation of responses seen in Fig. 3. The
solid dark blue and solid light blue lines, which represent the misfit
spaces for the real and imaginary components of the impedance
tensor and the tipper, respectively, also have multiple local minima,
but these are less extreme than those of apparent resistivity and
tipper amplitude. For this simple coastal model, we conclude that
the real and imaginary components of the impedance tensor and
tipper vector are the second worst option for inversion of coast-
affected data. Note that the phase misfit spaces, for both tipper and
impedance, have no such rash of local minima as in the case with
the amplitude related data.

Once apparent resistivity and tipper amplitude are put into the
logarithmic form, the jaggedness of their misfit spaces are reduced
almost entirely, with one exception on the resistivity line. There
remains a solitary positive cusp in the logarithmic tipper amplitude
line, which occurs exactly at the resistivity of the seawater, coinci-
dent with a marked discontinuity in the tipper phase. As the seafloor
resistivity approaches that of the seawater, the tipper amplitude goes
to zero and its phase is undefined. Also, once the seafloor resistivity
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Figure 5. MT misfit spaces for different seafloor models and different forms of data (solid and long-dashed lines). The grey boxes in the middle row of plots
outlines the range of models plotted in Fig. 6. Curves plotted in long-dashed lines are for the coast-free (1-D) case.

become less resistive than the seawater, the sign of the tipper flips,
resulting in a sudden increase in its phase misfit. As we rarely expect
the seafloor to be more conductive than the seawater above it, we
do not see this cusp in misfit to be too much of a problem.

Another peculiarity is the shape of the impedance phase misfit
curves (green lines) for the 3 �m true model (top row in Fig. 5),
which is very different than that of the other more resistive true
models. It does not have the sharp v-shaped minimum like the
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Figure 6. Top row: close-up of portions of the middle plots in Fig. 5 delineated by the grey box. Bottom row: same as the top row, except only 1 per cent noise
was added to the synthetic data as opposed to 5 per cent. Lines and symbols follow the same conventions as in Fig. 5.

other data types. The phase misfit remains very small on the end of
parameter space more conductive than 3 �m. This is because a 3 �m
seafloor is not enough of a contrast with the seawater to produce
a ‘coast effect’. The coast is the only 2-D feature in our simple
model. Without its 2-D distortion, the phase behaviour reverts back
to a half-space response which is always 45◦. Hence, there is very
little model discrimination by phase data alone when the seafloor
in both the true model and trial model are both filled with low
resistivity.

Next, we note that all of the dashed curves in Figs 5–7, while de-
rived using the same data forms as their solid-lined counterparts, are
comprised of MT responses over a 1-D half-space. Without a coast
effect, all of these misfit spaces are smooth on both sides of the ab-
solute minimum and contain no local minima. As we suspected, the
coast-free inverse problem is a far simpler one. Yet it should be noted
that on the end of model space that is far more conductive than the
true model, the misfit curves of impedance and apparent resistivity
flatten, even without a coast, giving an inversion algorithm no clear
direction; we will return to this phenomenon later. By nature of the

smoothness of the misfit space, the uni-parameter coast-free inverse
problem is guaranteed to converge on the true solution, regardless of
the form that the data take, as long as the downhill search begins at
a position in model space that is more resistive than the true model;
this is not guaranteed once a coast is added to the model. However,
we also note that the walls of the valleys in the misfit curves around
the true models are steeper for the coast-affected data than they are
for the coast-free data (Fig. 6). This reveals that the coast effect,
in particular that of the TE mode, better constrains the seafloor
resistivity. This is a consequence of the increase in wavenumber-
richness of the electromagnetic fields that have been distorted by
the shape of the land-sea interface (Wheelock 2013). Consider the
fact that in our simple model no new information is gained by
changing the location of the receiver when no coast (and no to-
pography) is present; under the standard plane-wave source field,
MT data from a 1-D earth consist of a single wavenumber, k = 0.
Yet with a coast, energy from the same plane-wave source is dis-
persed into the higher wavenumbers, each providing an independent
probe of the subsurface. This increase in independent constraints
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Figure 7. Misfit spaces for three common data ensembles: form A contains
real and imaginary components of both the impedances and the tippers;
form B contains apparent resistivities, impedance phases and the real and
imaginary components of the tipper; and form C contains logarithmic appar-
ent resistivities, impedance phases, logarithmic tipper amplitudes and tipper
phases.

produced by the coast effect results in greater certainty about the
subsurface.

The difference between the top and the bottom rows of plots in
Fig. 6 is the magnitude of the Gaussian errors introduced into the
synthetic data; the top row was made with a standard deviation of
noise five times greater than that of the bottom row. The valleys in
the misfit surfaces around the true model for data with smaller noise
characteristics are much narrower and steeper than that with the
larger noise characteristics. As linearized error propagation would
predict, the lower the magnitude of data errors the better constrained,
or the less uncertain, the final parameter value.

Rarely does one invert the TE mode without the TM mode, or
apparent resistivity without impedance phase; in Fig. 5 we see flat
zones or local minima in one data type that do not occur in its
complimentary type, providing evidence for why inversion with
an isolated data component might be a bad idea. So, in Fig. 7
we examine the joint misfit curves for three fundamental MT data
ensembles that make use of all complimentary components: form A
combines the real and imaginary components of both the impedance
and the tipper; form B combines apparent resistivity and phase of the
impedance with the real and imaginary components of the tipper;
and form C combines the logarithmic apparent resistivity and phase
of the impedance with the logarithmic amplitude and phase of the
tipper. Note that the solid-line curves in Fig. 7 are comprised of
misfits from both the TE and TM modes of impedance. The dashed-
line curves in Fig. 7, however, derive from the purely 1-D model
where the distinction of TE and TM mode dissolves and there is no
tipper response (Figs 2 and 3).

We find that for both the 1-D data and the 2-D coast-affected data,
only the form C, again that which involves logarithmic amplitudes,
produces a misfit space compliant with a deterministic inversion.
In Fig. 7, we see that the curves for data forms A and B, which do

not involve logarithmic amplitudes, flatten as the model prediction
moves towards a more conductive seafloor; this does not happen
with the form C. To explain this flattening, we look first at the 1-D
half-space curves where we can ignore impedance phase, which is
always 45◦ regardless of seafloor resistivity, and the tippers which
are always zero. We note that for the impedance and apparent resis-
tivity data forms over a 1-D half-space, fi [m] → 0 as ||m|| → 0,
where m represents the resistivity-depth profile of the earth. Now,
let us analyse how this limit affects our different measures of misfit.
For the non-log-scaled misfit we write,

lim
fi →0

X 2 = lim
fi →0

N∑
i=1

(
di − fi [m]

σi

)2

=
N∑

i=1

(
di

σi

)2

= const. (3)

This explains the flattening in the misfit curves when the seafloor
resistivity is much lower than that of the true model. The same
flattening is seen in the models with a coast because the coast effect
in impedance data vanishes as the seafloor resistivity approaches
that of seawater; thus the half-space behaviour, fi [m] → 0, again
prevails in the 2-D setting as seafloor resistivity moves towards
zero. Next, we write the definitions of the log-scaled data, model
predictions and error estimates in terms of their non-log-scaled
counterparts. With the log-scaled values denoted by the .̂, we have

d̂i = log10 di , (4)

f̂i [m] = log10 fi [m], (5)

and

σ̂i = σi

di ln 10
, (6)

where (6) is found through linear propagation of error, which we
discuss in Section 4.1. Then, the log-scaled misfit measure is

X̂ 2 =
N∑

i=1

[
d̂i − f̂i [m]

σ̂i

]2

=
N∑

i=1

[
(log10 di − log10 fi [m])(di ln 10)

σi

]2

=
N∑

i=1

[(
di

σi

)
ln

(
di

fi [m]

)]2

. (7)

Taking the limit again, we find

lim
fi →0

X̂ 2 = ∞. (8)

With the log-scaled inverse problem, there is no flattening in the mis-
fit curve on the conductive end of the parameter space. Conversely,
we analyse the different misfit behaviours as the seafloor becomes
more resistive. By noting that for the 1-D half-space, fi [m] → ∞
as ||m|| → ∞, we find

lim
fi →∞

X 2 = ∞, (9)

and

lim
fi →∞

X̂ 2 = ∞. (10)

For the current example we have shown that the gradient of the
log-scaled misfit is non-vanishing at both extremes in parameter
space, whereas the non-log-scaled misfit function is flat in the low
end of parameter space. Flat misfit curves lead to divergence in a
Jacobian or gradient-based inversion process as it is very difficult to
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detect, within the limits of numerical precision, which direction in
parameter space leads downhill in misfit; in other words, if the misfit
gradient vector vanishes, no update is made to the model and no
progress can be made towards a lower misfit. This behaviour at the
limits of parameter space provides another argument for choosing
the logarithm of apparent resistivity and the logarithm of tipper
magnitude as the optimal forms in which to invert MT data. Shin
& Min (2006) found similar benefits to using logarithmic misfit
measures for seismic wavefield inversion.

Other non-standard misfit measures have been proposed to im-
prove the robustness of inversion. The ‘point-symmetric’ misfit
measure (Wilson et al. 2006), uses an ad hoc combination of each
model prediction, fi, with each datum, di, to normalize the corre-
sponding residual in the following form,

X 2
ps =

N∑
i=1

(di − fi [m])2

1/2
(
d2

i + f 2
i [m]

) . (11)

It has been described as a way to weight data of dramatically dif-
ferent magnitude, say from different stations, time channels or fre-
quencies, equally. Plotted as a function of log (fi), this misfit for-
mulation does achieve the objective of symmetry about the true
solution, where X 2

ps = 0, but it has the undesirable quality of lev-
eling towards 2N as the model predictions, fi, stray far from the
measurements, di; this misfit curve flattens at both ends of param-
eter space. Furthermore, the logarithmic misfit scaling is easier to
justify as it is a model-independent way to equally weight diverse
data, and does not compromise the statistical theory accompanying
standardized residuals (Section 4).

Returning to (7), the only way the logarithmic form of data would
lead to a flat misfit curve is when none of the fi [m] change with
a change in m; we will encounter an example of this in Section 3.

In this case, the data have no sensitivity to the model parameters,
and the inverse problem begun in such a region of misfit space is
inescapably ill-posed. Finally, we note that all forms of data make
their closest approach to the 1.00 value of rms misfit at the true
model. Thus, assuming one has a sufficient quantity of data with
well-estimated data errors, the expected rms misfit of 1.00 holds
unique significance in this single-parameter system, regardless of
which data form is used. Again, we will show in Section 4.1 that
this is not exactly true for the transformed data as the data errors
become large, which suggests that it is better to remove relatively
high-noise, transformed data from inversion, rather than continue
to use them in a heavily down-weighted fashion.

2.2 2-D inversion

We close this MT section with a more practical illustration of how
data forms affect the inverse problem. We perform synthetic, reg-
ularized inversions on each different data form generated from
a highly parametrized model, as opposed to the single-parameter
model addressed in the previous section. The ‘true’ model, repli-
cated across the upper row of Fig. 8, is parametrized with 799
blocks below the same simple seafloor used previously; the inver-
sion software is described in DeGroot Hedlin & Constable (1990).
The background resistivity is 100 �m, with an anomalously con-
ductive block of 5 �m. The estimated data errors, used for weight-
ing in each inversion, were set using linear propagation formulae
(Section 4) scaled to the variance of the Gaussian noise that was
added to the components of raw impedance in the creation of the
synthetic data. The lower three rows of plots in Fig. 8 give a synop-
sis of the final models resulting from inversions using different data
forms, different quantities of synthetic noise, and different uniform

Figure 8. The true model and final models produced by synthetic inversion experiments with different data forms. The labels in each plot describe the setup
for that particular inversion. The data forms used are logarithmic apparent resistivity (log10(ρa)), linear apparent resistivity (ρa), impedance phase (�Z) and
the real and imaginary components of the raw impedance (Z). Synthetic Gaussian noise was added to the data for each inversion; their standard deviations are
labelled in terms of percentage amplitude of the raw impedances, either 5 per cent or 10 per cent. Also, the labels report the uniform seafloor resistivity of the
starting model, and the number of iterations required for each inversion to converge to the smoothest model with an rms misfit = 1.00, except for the cases
where the inversion did not converge (d.n.c.), plateauing at a higher misfit.
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starting models. Reported in each of these plots is the number of
iterations required for the inversion to converge upon the smoothest
model to fit the data to an rms misfit of 1.00; the designation ‘d.n.c.’
(did not converge) is used when a local minimum caused the inver-
sion to founder at an rms misfit greater than 1.00.

Much of the behaviour encountered in these highly parametrized
synthetic inversions confirms what was inferred from the single-
parameter misfit curves in Section 2.1, but there are slight differ-
ences that are presumably caused by the increase in degrees of
freedom. The logarithm of apparent resistivity paired with phase is
found to be the optimal form for inversion of data distorted by 2-D
bathymetry. The inversions using log-scaled data (Plots A, B & C)
consistently achieve the expected value of rms misfit, recovering,
in a smoothed form, models consistent with the true model; this is
achieved regardless of the degree of noise added and regardless of
the starting model used. Notice that the log-scaled inversion start-
ing from a 10 �m half-space (Plot B) requires the same number of
iterations as one starting from a 100 �m half-space (Plot C), demon-
strating a symmetry in misfit behaviour about the true model similar
to that observed for Form C of Fig. 7. This implies that an inversion
of log-scaled data is nearly independent of the starting half-space
value. A significant distinction for the log-scaled data form is that its
inversion converges with the fewest iterations, about a factor of two
fewer than the next best form of data. Thus, the logarithmic misfit
measure is not only robust with respect to starting model, it is faster,
too.

The next best form of data, contrary to our conclusions in
Section 2.1, is linear apparent resistivity and phase, which also
converged for all trials over noise levels and starting models
(Plots D, E & F). Nonetheless, with this data form, larger com-
ponents of random error hindered the inversion algorithm when
the starting model was more conductive than the true background
(Plot E). As the results of Section 2.1 would lead us to predict, when
given a starting model more resistive than the true background,
the inversion of the same high-noise data converged more rapidly
(Plot F). It is observed that linearly scaled inversion is less robust
with respect to the starting half-space resistivity, and again, the lin-
ear apparent-resistivity inversions required nearly twice as many it-
erations as their logarithmic counterparts. Lastly, the raw impedance
(real and imaginary components) inversions failed at every attempt:
all combinations of low noise, high noise, conductive starting model
and resistive starting model. We hypothesize this is a consequence
of the particular non-linearity the large dynamic range in the for-
ward functionals caused by a strong coast effect, as inversions of
synthetic raw impedance data from coast-free models converge
routinely.

In Section 4.1, we show that use of data in the linear apparent
resistivity form introduces a bias that is directly proportional to the
variance of the Gaussian errors in the real and imaginary compo-
nents of impedance. In contrast, there is no bias introduced with
the logarithmic form of apparent resistivity, nor with the impedance
phase, at least under a second-order approximation. Nonetheless,
both the log-scaled and linearly scaled data have an expected value
of rms misfit that deviates from the canonical 1.00 ever-increasingly
as the relative errors in the impedance grow. One should be aware
of this change in the expected rms misfit value for transformed
data, particularly when synthetic data have relative errors greater
than 10 per cent. We are reminded that, even with a high degree of
control over the data errors, as with the synthetic studies performed
here, a fanatical pursuit of an rms misfit of exactly 1 may be mis-
guided depending upon the form of data inverted and the form in
which the synthetic noise was added.

We conclude from these synthetic studies that an immediate im-
provement for 2-D inversion of marine MT data can be made by
switching from using complex impedance elements, or linear ap-
parent resistivity and phase, to logarithmic apparent resistivity and
phase; improvement is also expected by switching to logarithmic
amplitude and phase of the tipper data. In the absence of the coast
effect, as with inland MT data, the smoothness of impedance curves
implies that a 2-D inversion would not be dramatically affected by
which form the data take. Nonetheless, there is still the flatness on
the low-resistivity end of the misfit space that does not depend on
the coast effect, and becomes a problem when the starting model is
more conductive than the truth; this problem is only averted with
log-scaled data.

2.3 Comments on 3-D inversion

As 3-D inversion becomes more widespread, where the use of all
four elements of the impedance tensor (Zxx, Zxy, Zyx and Zyy) is
required, the results presented here may be consequential. The di-
agonal elements of the impedance tensor do not inherit the intuitive
interpretation that the form of apparent resistivity provides for the
off-diagonal elements. Also, a logarithmic apparent resistivity and
phase representation for the Zxx and Zyy impedance data, or equiva-
lently, a logarithmic amplitude and phase representation of the Vzx

or Vzy tipper data, seems unfit under certain resistivity model sym-
metries, where, in theory, these data are exactly zero. Under such
circumstances, the logarithm would approach negative infinity, and
the phase would be undefined. As a result, there has been a return
to interpreting and inverting data in the form of real and imagi-
nary impedance and tipper components in the growing number of
3-D MT studies (e.g. Newman & Alumbaugh 2000; Zhdanov et al.
2011; Tietze & Ritter 2013; Meqbel et al. 2014). Yet, with both ac-
tual data and synthetic data, there always exists some noise ‘floor’,
which by definition never vanishes in its average amplitude, regard-
less of the vanishingly small amplitude of the ideal response; the
diagonal impedance elements or tipper values will never truly be
measured as zero. Correspondingly, the error-bars, or inverse data
weights, must be fixed such that as the symmetries of the earth bring
the diagonal impedance elements or tipper data toward extremely
small values, they eventually lose all influence in the inversion.
Although it is possible to accomplish this with ever-larger error-
bars on log-scaled and phase data as they approach the noise floor,
there are hidden consequences which may harm the performance
of an inversion. We will return to this topic in Section 4, but for
now discuss, for example, the consequences for phase. When the
raw impedance or tipper data approach a floor in Gaussian noise,
the fractional component of data errors become very large. This
poses no problem for a least-squares (LS) inversion, which is of-
ten designed under the assumption of Gaussian-distributed data of
a known, finite variance. However, once transformed into phase,
these data are no longer Gaussian-distributed. Chave & Lezaeta
(2007) show that as the error fraction of the raw impedance data
become very large, the corresponding phase data tend towards be-
ing uniformly distributed. Thus, near the noise floor, phase does not
conform to our inversion machinery, and moreover, with all val-
ues having nearly equal probability, phase loses its utility. For such
reasons, we suggest removing both phase and log-scaled apparent
resistivity data from an inversion, once their pre-transform relative
error percentage exceeds a chosen value; we propose a 10 per cent
threshold in Section 4.
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Figure 9. Marine CSEM misfit spaces for different forms of data and combinations thereof.

Once data with high relative-errors are culled from inversion, our
preceding conclusions argue for the use of all four 3-D impedance
elements in the form of logarithmic apparent resistivity and phase,
as well as using logarithmic amplitude and phase with the tipper ele-
ments. We expect this to be especially true when the extreme effects
of the coast are confronted. Yet log-scaled data may even offer an
advantage in dealing with the wide dynamic range in amplitude be-
tween the diagonal and off-diagonal components of the impedance
tensor, or the two components of the tipper vector. Finally, we re-
mind the reader that from the perspective of the misfit functional,
there is no difference between inverting MT data in the form of
the logarithm of apparent resistivity and phase or the logarithm of
impedance amplitude and phase; the exponent as well as the factors
that do not change with the model, that is 1/(ωμ0), all cancel out. It
then seems natural that some of the benefits of log-scaled MT data
should carry over to other complex data types which exhibit a large
dynamic range. To bolster this premise, in the next section we turn
to an illustration using CSEM data.

3 A S Y N T H E T I C C S E M S T U DY

In this section, we again analyse a single-parameter misfit space,
but this time pertaining to marine CSEM data. The forward cal-
culations are made using the algorithm described in Key (2009).
The misfit plots represent a CSEM data set consisting of the in-
line electric fields from 40, evenly spaced, source–receiver offsets,
ranging from 0.25 to 10 km, at a frequency of 0.25 Hz. Indepen-
dent Gaussian noise with a standard deviation equal to 5 per cent
of the electric field amplitude, plus a constant noise floor at
10−15 VA(−1) m(−2) was added to the real and imaginary compo-
nents of the source-normalized fields. The model represents a sim-
ple deep-marine survey with the seafloor receiver residing in 1 km
deep water and the transmitter towed 50 m above the flat seafloor.

To explore the single-parameter misfit space, the uniform resis-
tivity below the seafloor is varied over many orders of magnitude.

In Fig. 9, we see the results of this variation for an example where
the ‘true’ seafloor resistivity was chosen to be 10 �m. Though not
shown in this paper, the exercise which created Fig. 9 was repeated
with different frequencies ranging between 0.1 and 10 Hz, even with
multiple frequencies used simultaneously, and it was found that the
relative character of the various misfit curves does not change. The
same was true over trials with different ‘true’ seafloor resistivities,
as well as different percentages of errors added to the data. There-
fore, while we plot the misfit space for only one of these trials in
Fig. 9, the analysis of the curves may broadly apply to CSEM data
sets over simple structures.

The feature common to all forms of the CSEM data we use in this
example is that their misfit curves flatten at the high resistivity end
of parameter space. When the seafloor resistivity reaches 1000 �m,
the skin depth of 0.25 Hz data is about 32 km, more than three times
the greatest source-receiver offset in this synthetic CSEM data set.
Once the skin depth becomes large compared with the maximum
offset, attenuation below the seafloor is undetectable, and the fields
are instead dominated by inductive dissipation in the seawater layer.
Since the seawater resistivity does not vary from model to model,
the misfit curve flattens, hence showing no sensitivity to resistivity
changes below the seafloor.

Of all forms CSEM data can take, use of complex components
appears to be the worst choice; their misfit curves drop slightly
and then flatten on both ends of the parameter line as the model
moves away from the true seafloor resistivity. The use of amplitude
data (log- or linearly-scaled) on its own is safe on the low-end
of the resistivity line but has a large local maximum separating
the flat misfit on the high end of the resistivity line from the true
minimum misfit model; this would surely confound any gradient-
based inversion if the starting model is not sufficiently close to, or
below, the true resistivity. The use of amplitude-only data at a single
frequency was common practice in the early days of marine CSEM
when phase was a very uncertain measurement (e.g. Johansen et al.
2005). With modern data it is always prudent to use phase, especially
given that it provides the tightest constraints in misfit near the true
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model (Fig. 9). Phase-only as well as joint amplitude-phase misfit
curves do not have that dramatic local maximum on the high side of
the resistively line, but they dip slightly and ultimately flatten on the
low side of the resistivity line. The most favourable misfit behaviour
is found with the joint log-amplitude and phase data ensemble, just
as was the case for MT data. With log-amplitude and phase data, the
flattening on the high end of the resistivity line is no worse than any
of the other data forms, while the misfit at resistivities below the true
model is always increasing away from the global minimum. The flat
misfit curves for low-resistivities and non-log-scaled CSEM data
can again be explained by the asymptotic reasoning of (3).

At present, most of the CSEM inversion codes that the authors
are aware of invert the data as real and imaginary fields, especially
those using the non-linear conjugate gradient method for large 3-D
models. These codes would immediately benefit from reformulating
their data misfit functional in terms of log-amplitude and phase. We
describe the steps necessary to do that in Appendix A.

4 A S TAT I S T I C A L V I E W O F
T R A N S F O R M AT I O N S O F C O M P L E X
DATA

One cannot properly solve an inverse problem without understand-
ing the statistics of their fundamental data; the estimated uncertain-
ties of a data set are as critical to an inverse problem as the data
themselves. Likewise, upon transforming data into a new form, it is
necessary to further analyse the effects that transformation has had
on the statistics of the new data. In the following, we address this
issue of the statistical repercussions of the specific data transforma-
tions discussed throughout this paper.

4.1 Error propagation

The use of each transformed data type within an inversion algorithm
requires the propagation of the estimated errors from the original
real and imaginary data components to the new transformed space
(in this context, ‘original’ simply implies a form where the data
probability distribution is known). Such propagated errors are criti-
cal for the weighting of residuals in a LS formulation, or, similarly,
in defining the likelihood function for Bayesian methods. In this
section, we provide the error propagation formulae for each data
form. These formulae are approximations, therefore we investigate
the rates at which they break down.

We also need to predict if any systematic bias is introduced
to the data themselves by the various transformations out of the
complex form. A LS solution attempts to produce a fit to the data
whose residuals have a mean of zero. When the mean of our data
on the whole is biased, the LS solution is misdirected away from
the true solution. Furthermore, underdetermined LS inversions are
only driven to the expected value for squared standardized residuals,
which is usually higher than the minimum achievable squared misfit;
the excess in degrees of freedom is such that the minimum misfit
model involves spurious structure that is only needed to fit the errors
in the data (Parker 1994). In Section 2.1, we mentioned using an
rms misfit value of 1.00 as the target for inversion. In this section,
we will drop the square-root and take the target to be the expected
value for mean-squared standardized residuals. We will show that
when the errors in the data become large, a target value of 1.00 no
longer corresponds to the true model. Again, once we transform
the data, we can no longer blindly aim for the same target misfit as
before, else the inverse solution may not align with the true model.

We start by defining the basic random measurement as some
complex number, either an impedance tensor element, a tipper vec-
tor element or simply an electromagnetic field component, each
estimated at a given frequency. Our task is to calculate the mean
and variance of functions of these random variables. The real and
imaginary parts of these measurements are each contaminated by
independent, identically distributed, Gaussian noise of zero mean
and known variance, σ 2. For our complex datum, z = x + iy, we
write:

Z = (x + X ) + i(y + Y ), (12)

where a capital letter signifies a randomly perturbed quantity, and a
lower case letter signifies the underlying true value. The probability
density function of the bivariate noise is

φ(X, Y ) = exp{−(X 2 + Y 2)/2σ 2}
2πσ 2

(13)

over the plane R
2. We use the symbol δ to signify the standard error

of a quantity, such that

δX =
√

var(X) = σ. (14)

Since X and Y are zero-mean, using the expectation operator, E, we
have

E[Z ] = z; (15)

given X and Y are independent, we quickly find

δZ 2 = δX 2 + δY 2 = 2σ 2. (16)

Now, we progress to more complicated functions of Z. For MT
data, we need to calculate the mean and variance of the apparent
resistivity, R, given by

R = 1

μω

[
(x + X )2 + (y + Y )2

]
, (17)

the logarithm of apparent resistivity, L = log10(R), and the
impedance phase, P, given in units of radians by,

P = arctan [(y + Y )/(x + X )] . (18)

For CSEM data, the definition for phase remains the same as (18),
and amplitude is given by

A =
√

(x + X )2 + (y + Y )2, (19)

with the true amplitude a ≡ |z|. The logarithm of amplitude behaves
identically to L in terms of relative variance, bias and mean-squared
standardized misfit.

The standard method of calculating the variance of functions of a
random variable is called linear propagation of errors, which utilizes
the first-order terms in a Taylor series expansion of our functions
of X and Y. Applied to R, L and P, we have the usual formulae for
propagated errors in MT data:

δR2 = 4r

μω
σ 2, (20)

which is commonly used in the fractional standard error form

δR

r
=

√
4σ 2

rμω
= 2σ

|z| =
√

2
δZ

|z| , (21)

and the remaining standard error forms are

δL = 1

ln(10)

(
2σ

|z|
)

= 1

ln(10)

(
δR

r

)
, (22)
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and

δP = σ

|z| = 1

2

(
δR

r

)
. (23)

For CSEM data or any complex measurement (displacement in
the Fourier-domain, for example), the relative error in amplitude
is

δA

a
= σ

|z| , (24)

and log-amplitude error, akin to (22), is given by,

δL = 1

ln(10)

(
δA

a

)
. (25)

One can also show, that to first-order E[R] = r, E[P] = p, E[L] = l
and cov(R, P) = cov(A, P) = cov(L, P) = 0; that is to say, to our
first-order knowledge, each transformed pair of data are unbiased
and uncorrelated.

The formulae (22) relative to (21), and (24) relative to (25),
illustrate that data which are not necessarily equal, but whose er-
rors scale with the magnitude of their corresponding datum, will
have equivalent errors in the log-domain. This provides an easy
check for accuracy in linear propagation of relative errors of a
data set: if all data have the same percentage error, then plotted
on a logarithmic scale the error-bars should look the same regard-
less of data amplitude. Furthermore, if subsequent LS inversion
acts in the log-domain, the algorithm will assume the log-domain
error-bars are symmetric, and therefore they should be plotted
as so.

Notice that δL and δP are equal, ignoring the constants 1/ln (10)
and 1/2, which cancel out in the inversion (Appendix A). It is
often assumed that all the complex data have the same percentage
amplitude of noise, in which case the error estimates for all the log-
amplitude and phase data are the same. When the reciprocal of these
error estimates are used as weights in inversion, all log-amplitude
and phase data will naturally have equal importance regardless of
their absolute magnitude; with CSEM data for example, the short-
and long-offset data will automatically have the same weight. This
observation is non-trivial because the same magnitude-independent
weighting carries over to the forward calculation and functional
derivatives as well. Thus, the transformation to log-amplitude and
phase data has the same desirable effect of improving the condition
of the linear system as do other pre-conditioners (e.g. Newman
& Boggs 2004); this is exemplified by the factor of two increase
in rate of convergence when switching to log-amplitude and phase
inversion (e.g. Section 2.2). Yet, in contrast to other pre-conditioning
strategies, log-amplitude and phase inversion requires no additional
computational effort.

Now, we assess the inaccuracy of the first-order assumptions. To
do this exactly, we would need to calculate complicated expectation
integrals, take E[P2], for example. However, we are not interested in
exact methods for bias estimation or error propagation, but instead
an order of magnitude gauge on the degree of failure of our linear
approximation. For this lesser task, we add the second-order terms to
our Taylor series expansion of the arbitrary function, F(x + X, y + Y),
and are left with much simpler expectation integrals. Applying this
methodology [for more detail see Wheelock (2013)], the second-
order mean of F is found to be

E[F]s = f + 1

2

∂2 f

∂x2
δX 2 + 1

2

∂2 f

∂y2
δY 2, (26)

and the second-order expansion for the variance of F is

δF2
s =

(
∂ f

∂x

)2

σ 2 +
(

∂ f

∂y

)2

σ 2 + 1

2

(
∂2 f

∂x2

)2

σ 4

+ 1

2

(
∂2 f

∂y2

)2

σ 4 +
(

∂2 f

∂x∂y

)2

σ 4, (27)

where the subscript s denotes ‘second order’. The first term in (26)
and the first two terms in (27) comprise the respective first-order
versions. By applying (26), we see there is a small upward bias in
the mean estimate of apparent resistivity, given by,

E[R]s − r = 2

μω
σ 2. (28)

Note that the second-order Taylor series expansion of R is exact
since all higher order derivatives are zero. Normalizing (28) by the
first-order δR, (21), to provide a measure of bias relative to our
linearly propagated errors, we find

E[R]s − r

δR
= σ

|z| . (29)

Thus, with 10 per cent error in R, the mean of R is a biased upward
by 5 per cent of one linearly propagated standard deviation. This
bias, though small for low-noise measurements, provides slightly
more evidence against the use of the apparent resistivity data form.
Similarly, the relative bias in amplitude, say for CSEM data, is

E[A]s − a

δA
= σ

2a
, (30)

where again a 10 per cent error in A, results in a 5 per cent bias in
E[A]s/δA. On the contrary, we find that the means of L and P can
be considered bias-free by measure of the second-order expansion
(E[L]s = l, and E[P]s = p). Considering this finding and especially
those of Sections 2.1, 2.2 and 3, the log-amplitude (or log-apparent
resistivity) and phase data forms are optimal for robust inversion,
at least until the relative errors in the data exceed values amenable
to prediction by a second-order approximation.

Using (27) to find the second-order relative forms of standard
error in apparent resistivity, we have,

δRs

r
= 2σ

|z|

√
1 + σ 2

|z|2 . (31)

The first term outside of the square-root in (31) is the linear approx-
imation, and the terms within the square-root represent the error
in that approximation. The linearly approximated errors are under-
estimated by a very small amount. With 5 per cent noise added to
the real and imaginary components of z (σ = 0.05|z|), the linear
propagation of errors would predict 10 per cent noise in the appar-
ent resistivity, whereas the true proportion of noise in the apparent
resistivity is closer to 10.012 per cent. Similarly, the standard errors
in the log of apparent resistivity and phase, under the second-order
approximation, are

δLs = 2σ

ln(10)|z|

√
1 + σ 2

|z|2 , (32)

and,

δPs = σ

|z|

√
1 + σ 2

|z|2 . (33)

For the second-order variance in amplitude, we find empirically that
(27) is not accurate enough given the square-root in A. Augment-
ing (26) up to fourth-order terms, we find a more accurate mean
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amplitude

E[A] f = a + σ 2

2a
+ σ 4

8a3
, (34)

and it is trivial to derive following exactly without appealing to any
Taylor-series expansions

E[A2] = a2 + 2σ 2. (35)

Using (34) and (35) the second-order formula for the relative stan-
dard error in amplitude

δAs

a
= σ

|z|

√
1 − σ 2

2|z|2 . (36)

In the case of amplitude, the linearly propagated errors are
slightly overestimated; a 5 per cent linearly estimated error in re-
ality is closer to 4.997 per cent. Computer generated random num-
bers confirmed the accuracy of our Taylor-series based formu-
lae: (32) and (33) match simulations up to the percentage error,
σ/|z| × 100 = 15 per cent, beyond which they noticeably under-
predict the failure of a linear-approximation; the amplitude formu-
lae (30) and (36) perform well up to σ/|z| × 100 = 30 per cent;
and, again, formulae (29) and (31) are exact for all levels of
percentage error. Finally, one can show that even by the second-
order expansion, each pair of transformed data remain uncorrelated,
cov(R, P) = cov(A, P) = cov(L, P) = 0.

The second-order estimates of bias in the mean and deviations
from our linearly propagated errors are minute and seemingly neg-
ligible when the percentage of noise in the complex data is small.
Yet a mean-squared misfit measure is sensitive to both bias in the
mean and bias in the linearly propagated standard errors. Again
using Taylor-series expansions as above, we find that the expected
values for the mean-squared misfit measures for the transformed
data are perturbed from 1, the value expected for the fundamental
complex data. The predictive formulae for the sum-squared misfit
of N data points in the various forms are

E

[
N∑

i=1

(
Ri − ri

δRi

)2
]

s

=
N∑

i=1

(
1 + 2

σ 2
i

|zi |2
)

, (37)

E

[
N∑

i=1

(
Ai − ai

δAi

)2
]

s

=
N∑

i=1

(
1 − σ 2

i

4|zi |2
)

, (38)

E

[
N∑

i=1

(
Li − li

δLi

)2
]

s

=
N∑

i=1

(
1 + σ 2

i

|zi |2
)

, (39)

and

E

[
N∑

i=1

(
Pi − pi

δPi

)2
]

s

=
N∑

i=1

(
1 + σ 2

i

|zi |2
)

. (40)

The effect on apparent resistivity data is the worst of all because
both bias in the mean and the breakdown of linear error-propagation
distort constructively. With 10 per cent error in all the complex com-
ponents, the mean-squared misfit for the apparent resistivities of the
true model is 1.02. The same noise propagated into log-amplitude
and phase would produce a mean-squared misfit at the true model
of 1.01; for amplitude, it is 0.9975. Knowing formulae (37)–(38),
one can simply adjust their target misfit for inversion according
to the percentage of noise they estimate to exist in their data. Yet,
even when using the preferred log-amplitude and phase data, a safer
strategy to avoid problems with bias in the mean and standard errors

is to simply remove from inversion any transformed datum involv-
ing a fundamental data-error percentage, σ/|z| × 100, greater than
10 per cent. Of course, inversion is not required to treat all data in the
log-domain. So, with a flexible algorithm, one could retain only the
high-error data, properly down-weighted, in the fundamental com-
plex form, while treating the low-error data in the log-amplitude
and phase form.

4.2 Gaussian conformance

A LS inversion method, like that used in the inversions of
Section 2.2, has the following advantages when the random er-
rors in the inverted data are uncorrelated, zero-mean and Gaussian-
distributed of equal variance: it is a maximum likelihood, unbi-
ased and minimum variance estimator; the latter two conditions
are shown by the Gauss-Markov theorem (e.g. Priestly 1981). We
have assumed that an LS inversion delivers these advantages when
used with the fundamental complex data described in this paper. To
confer the same advantages to log-scaled data, in Section 4.1, we
showed that the Gauss-Markov conditions (uncorrelated, zero-mean
and known variance) can be satisfied by errors in log-amplitude and
phase data, at least, when the relative variance remains small. What
is left is to assess the extent to which such transformed data appear
Gaussian.

In the preceding sections, illustrations have dealt with the com-
plex data of MT impedance or CSEM fields. It is likely that the
errors in these data are uncorrelated and Gaussian-distributed as
they are derived from a discrete Fourier transform (FT) of ran-
dom fields regularly sampled in time. The Central Limit The-
orem informs us that the FT, involving the weighted sum of
many of these random samples, tends towards coefficients which
are Gaussian-distributed as the number of samples involved in-
creases, regardless of the original distribution of each individual
sample in time. Furthermore, multiple FT coefficients from ad-
jacent time-windows are often stacked together to increase the
signal-tonoise ratio, a step which, again by the Central Limit The-
orem, bolsters the assumption of Gaussian-distributed errors in our
complex data. When we convert these stacked complex data to
amplitude, squared-amplitude (as with apparent resistivity), log-
amplitude, and phase, each a non-linear transformation, we would
prefer the resulting probability distribution of data errors to remain
Gaussian so that the desired performance of an LS inversion is
preserved.

Stochastic inversion methods which make use of Markov chain
Monte Carlo (MCMC) sampling (e.g. Ray et al. 2013) are per-
haps more sensitive to the full probability distribution of the trans-
formed data, rather than just their mean and standard deviation. For
some of the transformed data we have discussed, the distributions
are well known; amplitude data follow a Rice distribution, while
apparent resistivity data follow a non-central chi-squared distribu-
tion. In short, the distributions of our converted data errors are
not Gaussian, and an exploration into their precise forms is be-
yond the scope of this paper; for a more thorough treatment of this
topic, see Chave & Lezaeta (2007). Instead, we are only interested
in circumstances in which a realistic data set can appear to have
Gaussian-distributed errors, so that we may continue to employ
LS for deterministic methods or Gaussian likelihoods for MCMC
machinery.

To quantify the Gaussian semblance of our data errors, we apply
the Kolmogorov-Smirnov (KS) test (Massey 1951), using as the null
hypothesis that the synthetic transformed data used in Section 2 are
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Gaussian-distributed. The KS test produces a statistic, dN, which is
a measure of the difference between the hypothesized cumulative
distribution function and the observed cumulative step-function of
an N-sized sample. The key is that the probability distribution of
dN is known, and can be derived independently of the sample’s
cumulative distribution. Then, armed with the value of dN calculated
for a certain sample, the null hypothesis may be rejected with a
quantifiable level of significance.

The synthetic data we will use are based on those of the solid
lines in Fig. 2 but repeated for a survey of 50 MT receivers. Each
receiver provides complex data at 17 frequencies in both the TE
and TM modes resulting in the data quantity of M = 1700 per
complementary data type. For example, we use 1700 real and 1700
imaginary data. Independent realizations of Gaussian-distributed
random numbers are added to the real and imaginary data, with
standard deviations scaled to a fraction of the amplitude of each
complex pair, σ/|z|. Then, the noisy and clean data are both con-
verted into apparent resistivity, amplitude, log-apparent resistivity
(analogous to log-amplitude), and phase, and residuals for each are
calculated. Note that it is crucial that the phase data are unwrapped
before residuals are computed (Appendix A). Each of the resid-
uals are then normalized by linearly propagated error estimates
(Section 4.1), as they would be in an inversion scheme. The KS
statistic, dN, is then calculated for each type of normalized residual;
the results are plotted in Fig. 10.

First, notice the random fluctuations of the dN; we must not forget
that the statistic itself is a random number. However, there is a clear
underlying trend to the dN. As we would expect, the trends for the
dN that pertain to the real and imaginary parts of impedance are
flat, indicating that the null hypothesis, ‘the residuals are Gaussian-
distributed’, is acceptable for all levels of noise. Similarly, the am-
plitude residuals appear to be Gaussian-distributed over the tested
range of noise levels. The phase errors appear to be Gaussian-
distributed until the percentage of noise exceeds 30 per cent.

Figure 10. KS statistic, dN, for various MT data types given variably propor-
tioned Gaussian noise added to the real and imaginary parts of impedance.
Confidence thresholds for the rejection of the hypothesis that the data
are Gaussian-distributed are shown with the dashed horizontal black lines.
Dashed green and magenta lines show the linear trend fit to the KS statistics
for apparent resistivity and log-apparent resistivity, respectively. The dotted
vertical lines mark the point on the percentage-noise line beyond which
apparent resistivity and log-apparent resistivity residuals may be rejected as
Gaussian-distributed with 95 per cent confidence.

However, the apparent resistivity and log-apparent resistivity residu-
als only seem Gaussian when the percentage errors are even smaller.
We fit linear trends to the noisy dN for apparent resistivity and
log-apparent resistivity, and find those trends cross the 95 per cent
confidence level for rejection of the null hypothesis at 12 per cent
and 13 per cent added noise, respectively. Thus, when the estimated
noise in the complex data exceeds about 12 per cent of its magnitude,
it is unwise to assume errors in apparent resistivity or log-amplitude
are Gaussian-distributed. So long as errors in the complex data re-
main small, stochastic inversions may be applied to log-amplitude
and phase data using the usual Gaussian likelihood function. Though
we have yet to see a stochastic inversion of log-amplitude and phase
data, for small data errors we do not expect the log-amplitude and
phase derived posterior distributions to differ from the those de-
rived from real and imaginary data. However, the improvement in
smoothness and removal of vanishing gradients in the misfit space,
as demonstrated in Sections 2.1 and 3, are expected to reduce the
‘burn-in’ period, and perhaps even speed-up the convergence upon
the distributions of solution models.

5 C O N C LU S I O N S

In this paper, we have analysed the effect of common data transfor-
mations for complex data, constructing examples from frequency-
domain electromagnetic geophysical methods. We have used
single-parameter misfit curves as well as multiparameter synthetic
inversions to decide which data transformation is optimal for ro-
bust and fast inversion. Our conclusion is that the logarithmic-
amplitude and phase transformation is the optimal form. It produces
the smoothest misfit space which is rarely flat, two qualities that fa-
cilitate an inversion’s reliable convergence to the true solution. In
contrast, we show that all non-log-scaled data result in flat misfit
spaces on the end of parameter space which produces observations
of diminishing magnitude.

For the case of MT data, this analysis applies to impedance and
tipper data, where both are best inverted in terms of log-amplitude
and phase. We showed that coast-affected data reap the greatest
benefit from a log-amplitude and phase transformation, due to their
large dynamic range and non-linear nature with respect to frequency
and seafloor resistivity. It was also shown that while the coast-effect
can hamper inversion of non-log-scaled data, it nonetheless provides
better constraints on the subsurface, regardless of the form the data
take; the gradients in misfit are steeper near the true solution when
a coast is involved. For CSEM, again the large dynamic range in the
data produces flatness on the low-resistivity end of parameter space
when data are not log-scaled. No form of scaling for CSEM data
removes the flatness on the high-resistivity end of parameter space,
but this is due to vanishing seafloor sensitivity. We also showed
that with both MT and CSEM data, there are pitfalls when using,
for example, only amplitude or only TM-mode data; the use of
complementary data types, log-amplitude with phase or TE-mode
with TM-mode, removes local minima from the misfit space.

Perhaps the most encouraging finding is that a log-amplitude and
phase inversion converges almost two times faster than inversions
of all other data types. Our high-dimensional synthetic inversions
also showed that a log-amplitude and phase inversion is far more
robust with respect to starting model and with respect to the degree
of noise in the data.

Finally, we analysed the statistics of each transformed data type
under the assumption that the fundamental real and imaginary data
are Gaussian-distributed. We found that for small errors (less than
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10 per cent of amplitude in the real and imaginary components) the
assumptions necessary for using least-squares and a mean-squared
standardized-misfit target of 1.00 in a deterministic, log-amplitude
and phase inversion still hold. Similarly, a Gaussian likelihood may
still be used within an MCMC stochastic inversion of log-amplitude
and phase data, so long as the relative errors remain below about
12 per cent of the amplitude (a consequence of the probability den-
sity function of log-amplitude, and less so of phase). We provide
formulae to predict changes in the means, standard errors and the
mean-squared misfit for the transformed data, as the fundamental er-
rors grow. Nevertheless, we recommend that data with fundamental
errors of 10 per cent or greater be removed from log-amplitude and
phase inversion; if data with large errors must be used, a more sta-
tistically sound choice is to invert them in the fundamental complex
form.

A C K N OW L E D G E M E N T S

This work was supported in part by the Seafloor Electromagnetic
Methods Consortium at Scripps Institution of Oceanography. We
thank Robert L. Parker for discussions which helped guide the
statistical aspect of our research. We also thank Andrei Swidinsky,
Max Moorkamp and one other anonymous referee for their thorough
reading of the manuscript, and for their suggestions which certainly
improved this text.

R E F E R E N C E S

Chave, A. & Jones, A.G., 2012. The Magnetotelluric Method: Theory and
Practice, Cambridge Univ. Press.

Chave, A.D. & Lezaeta, P., 2007. The statistical distribution of mag-
netotelluric apparent resistivity and phase, Geophys. J. Int., 171(1),
127–132.

Constable, S., Parker, R. & Constable, C., 1987. Occam’s inversion: a practi-
cal algorithm for generating smooth models from electromagnetic sound-
ing data, Geophysics, 52, 289–300.

Constable, S., Key, K. & Lewis, L., 2009. Mapping offshore sedimentary
structure using electromagnetic methods and terrain effects in marine
magnetotelluric data, Geophys. J. Int., 176(2), 431–442.

Cox, C., 1980. Electromagnetic induction in the oceans and inferences on
the constitution of the earth, Geophys. Sur., 4, 1–20.

DeGroot Hedlin, C. & Constable, S., 1990. Occam’s inversion to generate
smooth, two-dimensional models from magnetotelluric data, Geophysics,
55(12), 1613–1624.

Egbert, G., 1990. Comments on ‘Concerning dispersion relations for the
magnetotelluric impedance tensor’ by E. Yee and KV Paulson, Geophys.
J. Int., 102, 1–8.

Johansen, S.E., Amundsen, H.E.F., Røsten, T., Ellingsrud, S., Eidesmo, T. &
Bhuiyan, A.H., 2005. Subsurface hydrocarbons detected by electromag-
netic sounding, First Break, 23(1081), 31–36.

Key, K., 2009. 1D inversion of multicomponent, multifrequency marine
CSEM data: methodology and synthetic studies for resolving thin resistive
layers, Geophysics, 74(2), F9–F20.

Key, K. & Constable, S., 2010. Coast effect distortion of marine magne-
totelluric data: insights from a pilot study offshore northeastern Japan,
Phys. Earth planet. Inter., 184(3–4), 194–207.

Massey, F.J. Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit,
J. Am. Stat. Assoc., 46(253), 68–78.

Meqbel, N.M., Egbert, G.D., Wannamaker, P.E., Kelbert, A. & Schultz, A.,
2014. Deep electrical resistivity structure of the northwestern U.S. derived
from 3-D inversion of USArray magnetotelluric data, Earth planet. Sci.
Lett., 402, 290–304.

Myer, D., Constable, S., Key, K., Glinsky, M.E. & Liu, G., 2012. Marine
CSEM of the Scarborough gas field, Part 1: Experimental design and data
uncertainty, Geophysics, 77(4), E281–E299.

Newman, G.A. & Alumbaugh, D.L., 2000. Three-dimensional magnetotel-
luric inversion using non-linear conjugate gradients, Geophys. J. Int., 140,
410–424.

Newman, G.A. & Boggs, P.T., 2004. Solution accelerators for large-
scale three-dimensional electromagnetic inverse problems, Inverse Prob.,
20(6), S151–S170.

Parker, R.L., 1994. Geophysical Inverse Theory, Princeton Univ. Press.
Priestly, M.B., 1981. Spectral Analysis and Time Series, Academic Press.
Ray, A., Alumbaugh, D.L., Hoversten, G.M. & Key, K., 2013. Robust and

accelerated Bayesian inversion of marine controlled-source electromag-
netic data using parallel tempering, Geophysics, 78(6), E271–E280.

Selway, K., Thiel, S. & Key, K., 2012. A simple 2-D explanation for negative
phases in TE magnetotelluric data, Geophys. J. Int., 188, 945–958.

Shin, C. & Min, D.-J., 2006. Waveform inversion using a logarithmic wave-
field, Geophysics, 71(3), R31–R42.

Tietze, K. & Ritter, O., 2013. Three-dimensional magnetotelluric inversion
in practice—the electrical conductivity structure of the San Andreas Fault
in Central California, Geophys. J. Int., 195, 130–147.

Wannamaker, P.E., Stodt, J.A. & Rijo, L., 1987. A stable finite element
solution for two-dimensional magnetotelluric modelling, Geophys. J. R.
astr. Soc., 88(1), 277–296.

Weidelt, P., 1982. Response characteristics of coincident loop transient elec-
tromagnetic systems, Geophysics, 47(9), 1325–1330.

Weidelt, P. & Kaikkonen, P., 1994. Local 1-D interpretation of magnetotel-
luric B-polarization impedances, Geophys. J. Int., 117(3), 733–748.

Wheelock, B.D., 2013. Electromagnetic imaging of the crust and upper
mantle across the continental margin in Central California, PhD thesis,
University of California, San Diego.

Wilson, G.A., Raiche, A.P. & Sugeng, F., 2006. 2.5D inversion of airborne
electromagnetic data, Explor. Geophys., 37(4), 363–371.

Worzewski, T., Jegen, M. & Swidinsky, A., 2012. Approximations for the
2-D coast effect on marine magnetotelluric data, Geophys. J. R. astr. Soc.,
189(1), 357–368.

Zhdanov, M.S., Smith, R.B., Gribenko, A., Cuma, M. & Green, M., 2011.
Three-dimensional inversion of large-scale EarthScope magnetotelluric
data based on the integral equation method: geoelectrical imaging of
the Yellowstone conductive mantle plume, Geophys. Res. Lett., 38(8),
L08307, doi:10.1029/2011GL046953.

A P P E N D I X A : A DA P TAT I O N O F
G AU S S - N E W T O N A N D N L C G

For non-linear inversion, two commonly used algorithms are the
Gauss-Newton and Non-linear Conjugate Gradient (NLCG) meth-
ods. In this appendix, we describe how to adapt these two algorithms
to invert complex data in the log-amplitude and phase domain. Note
that we will describe the adaptation of algorithms that were previ-
ously designed for frequency-domain, complex data, such as for MT
impedance, or CSEM electromagnetic fields. However, the princi-
ples are easily transferred to non-negative, real data, consistent with
certain time-domain electromagnetic methods (e.g. Weidelt 1982).
So long as the data are always positive, the log-scaling we describe
in the following text may be used with real data by simply ignoring
the phase component.

The adaptation of the Gauss-Newton method is quite simple. One
need only redefine the normalized misfit measure, or the residuals
to be squared and summed, and re-scale the Jacobian matrix. In
essence, the same two steps underlie the transformation of NLCG,
but they are slightly obscured by the gradient calculation when
using adjoint-reciprocity. We first turn to Gauss-Newton where the
Jacobian matrix is calculated and stored in full. The scaling of the
Jacobian follows from the chain rule:

Ĵi j = ∂ f̂i

∂m j
= ∂ f̂i

∂ fk

∂ fk

∂m j
= ∂ f̂i

∂ fk
Jk j , (A1)

 at U
niversity of C

alifornia, San D
iego on A

pril 17, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


1780 B. Wheelock, S. Constable and K. Key

where we have reused the ‘hat’ notation from equations (3)–(10).
The functional ∂ f̂i/∂ fk represents the data-space transformation
whose behaviour for MT data is defined by the first-order deriva-
tives of equation (17), after taking logarithm, and equation (18)
with respect to x and y. The analogue formulae for log-amplitude
data, say for CSEM electric fields, as opposed to logarithmic ap-
parent resistivity, are similarly derived. In fact, with the proper
normalization, it makes no difference whether MT data are treated
as the log-amplitude and phase of a complex impedance element
itself, or the more traditional logarithmic apparent resistivity and
phase. Therefore in the remaining development we drop the appar-
ent resistivity formulation and work in the more general terms of
log-amplitude and phase, a characterization common to all complex
data types.

The normalized residuals may be re-scaled as was done for log-
amplitude type data with the terms inside the brackets of (7). But,
for the sake of generality, here we will not assume equal errors in
the real and imaginary parts, X and Y, respectively, of the complex
data, Z. The two forms of normalized residuals are then,

�L

δL
= |Z |2√

X 2δX 2 + Y 2δY 2
ln

( |Z |
|z|

)
, (A2)

for the log-amplitude data, L, and

�P

δP
= |Z |2√

X 2δY 2 + Y 2δX 2
(P − p), (A3)

for the phase data, P, which will have units of radians through-
out this appendix. We have reused notation conventions similar to
Section 4.1. While upper-case letters still denote random variables,
that is our measured data, the same letter in lower case denotes the
corresponding non-random value of the forward functional’s data
prediction. It is necessary to check for phase-wrapping when deal-
ing with phase residuals. This may be done by checking alternative
residuals �P + 2π and �P − 2π , as well as the original �P, and
selecting the smallest one among them. The Jacobian, however, is
not affected by phase-wrapping.

Given that primer, we now turn to the NLCG method. We will
follow the description and notation found in Newman & Boggs
(2004), and refer to equations therein with the prefix N. In addi-
tion to re-scaling of the residuals used in the objective function,
which we discussed in the preceding paragraph, the transforma-
tion of the NLCG inverse algorithm to the log-amplitude and phase
data space involves re-scaling the data component of the objective-
function’s gradient, ∇φd. In essence, this data gradient is a collapsed
Jacobian, where each row of the Jacobian is scaled by the corre-
sponding data residual before being summed column-wise; the re-
sulting vector has a dimension equal to the number of the unknowns
in the model. Newman & Boggs (2004) describe the calculation of
∇φd which uses adjoint reciprocity. This method has the advantage
of never having to explicitly compute or store the full Jacobian

matrix which can be immense for realistic 3-D problems. The data
gradient is computed in part by solving the same linear system
that represents the forward functional, (N19), but where the source
vector, (N18), is modified to contain the normalized data residu-
als inserted at their respective point of observation in the model.
The solution of this linear system produces complex field values
covering the entire model domain. Thus, the data gradient is of-
ten described as a reverse-propagation of the data residuals onto
the model space. In order to transform an NLCG algorithm from
inverting for the complex data to inverting for the log-amplitude
and phase of those data, we need only to modify the source vec-
tor once more, while all else in the linear system remains the
same.

Substituting Ĵ for J in (N16) and inserting (A1), we find

Ĵ j i = G jp K −1
pl Qlk

∂ f̂k

∂ fi
. (A4)

We combine the final two multiplicands in (A4), the interpolator ma-
trix, Q, and the non-linear data-transformation functional, rewritten
as T [ f ] = ∂ f̂i/∂ fk , with the source vector to get,

v̂ = QT T [ f ]T D̂T {D̂(d̂ − f̂ )}∗ = QT ŝ. (A5)

Here we have also introduced a new diagonal weighting matrix,
D̂, which uses our transformed error estimates δL and δP. To sim-
plify the recoding of an NLCG algorithm which was designed for
complex data, we formulate a new complex data vector, d̂ , with
log-amplitude in the real part and phase in the imaginary part like
so,

d̂ = ln(|Z |) + i arg(Z ) = L + i P. (A6)

The corresponding model prediction is

f̂ = ln(|z|) + i arg(z) = l + i p. (A7)

Recall that f = z = x + iy. We perform complex differentiation
using the Wirtinger derivative to find the functional form of T[f],
yielding

∂ f̂

∂ f
= 1

2

(
∂l

∂x
+ ∂p

∂y

)
+ i

2

(
∂p

∂x
− ∂l

∂y

)
. (A8)

The non-linear functional (A8) simplifies rather satisfyingly to,

∂ f̂

∂ f
= e−i p

|z| . (A9)

Finally, combining (A2), (A3), (A5) and (A9), we find that the pre-
interpolation, transformed source vector, ŝ from the right-hand side
of (A5), is given by,

ŝ = e−i p

|z|
(

�L

δL2
− i

�P

δP2

)
. (A10)
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