
And the geophysicist replied: “Which model do you want?”
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ABSTRACT

Marine controlled-source electromagnetic (CSEM) and
magnetotelluric (MT) soundings were carried out between
1997 and 2003 over the Gemini prospect in the Gulf of Mexico
during early development of marine instrumentation. The re-
sulting data sets provide a good test bed for examining the ef-
fect of the data type and misfit choice on regularized inversion
solutions. We inverted the data sets individually and jointly for
isotropic and anisotropic resistivity at a variety of data misfits.
We found that multifrequency CSEM inversions vastly im-
proved structural resolution over single-frequency inversions,
suggesting that variation in skin depth added significant infor-
mation. Joint MT and CSEM inversion appeared to improve
resolution over MT-only inversions at depths considerably
deeper than the CSEM data can resolve, probably by con-
straining shallow structure in the parts of the model to which
the MT data were sensitive. The addition of model anisotropy

improved data fit, but introduced an arbitrary scaling between
the regularization penalty on model roughness and the penalty
on anisotropy. A small relative penalty on anisotropy produced
two independent models for horizontal and vertical resistivity,
whereas a large penalty reproduced the isotropic models. In-
termediate penalties produced pleasing models, but there was
no objective criterion to choose one particular model. Inverted
models also depend significantly on the choice of target data
misfit, but the optimum misfit is difficult to determine even
with well-estimated errors. So-called L-curves do not provide
an objective choice of misfit because they are both heuristic
and depend on the choice of data that is plotted. Various mea-
sures of structure in data residuals were tested in an attempt to
guide the misfit choice, with some success, but this too was
somewhat heuristic. Ultimately, of the 100 or so inversions that
were run, no single model could be considered “preferred,” but
together they provided a good understanding of the informa-
tion contained in the data.

INTRODUCTION

Passive and active source electromagnetic (EM) soundings, and
in particular the magnetotelluric (MT) and controlled-source EM
(CSEM) methods, are important tools for academic studies of
earth’s geologic processes and also for commercial resource explo-
ration (recent reviews are given by Key, 2012a; Selway, 2014;
Smith, 2014). The data generated from these methods, which are
complex electric and magnetic fields and/or transfer functions be-
tween field components, do not lend themselves to direct interpre-
tation, but they require comparison with a numerically generated
synthetic response using a mathematic representation of an earth
model. It has become common practice to use automated routines
to generate models that are compatible with field observations.
These routines may be statistically based, whereby many models

are generated from some quasi-random process and are compared
with the observed data, or deterministic, in which gradients derived
from the forward model process and misfit surfaces are used to up-
date a sequence of models which may, or may not, converge to a
solution.
For higher dimensional models (2D and 3D), the size of the

model space and the computational cost of the forward calculations
generally preclude the use of statistical methods. Deterministic in-
verse methods are seductive in their simplicity, at least when they
converge and achieve a good fit to the data: Feed them a data set and
a starting model, and they return a model that fits the data. However,
the widespread and effective use of higher dimensional inversion
algorithms can inure the user to the underlying problems of geo-
physical inversion. The solutions are nonunique, and so if any sol-
ution can be found, there are an infinite number of other acceptable
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solutions to be had. The solutions are also unstable, which means
that very large changes to the model result in only small or even no
change in the fit to the data. In mathematic parlance, the problem is
ill posed.
Most deterministic methods require that some penalty be applied

to the model to deal with instability and nonuniqueness. This may
take a variety of forms, but almost every extant algorithm uses some
variation on first derivative smoothness to stabilize the models,
although other penalties can, and sometimes are, applied. A conse-
quence of using similar smoothness penalties is that the models pro-
duced by the various inversion algorithms often look very similar
for a given data set, providing some confidence that the results are
meaningful. The results might well be meaningful, but the purpose
of this paper is to highlight how models produced by even a single
inversion algorithm can vary significantly depending on the selec-
tion of data and choice of misfit level. Many readers will be gen-
erally aware of this problem already, but we also demonstrate that
for CSEM and MT data collected at multiple frequencies, inverted
models can change in unexpected ways because different subsets of
data are inverted individually or in combination.
Similar exercises to ours have been done before (e.g., Commer

and Newman, 2009) but usually on synthetically generated data.
Synthetic model studies are useful because the true models are
known, and so the data distribution and the inversion algorithms
can be tested for their ability to recover the known structure. How-
ever, synthetic models are unrepresentative of the real world in two
ways: (1) The error statistics are well behaved and are known ex-
actly. We make the case below that it is important to understand the
error structure of the field data, but unfortunately, one can only go
so far in estimating errors of real data, and they are rarely perfectly
behaved. We show that differences in misfit that are smaller than the
uncertainty in the error estimation produce significant differences in
inverted models. (2) With few exceptions, the models used in syn-
thetic studies are chosen to be simple structures within a homog-
enous host. In the real world, the host geology is not simple,
and it may be variably anisotropic. Although the data may be sen-
sitive to the presence of anisotropy, we show that it is difficult to
quantify just how much anisotropy is present in the real earth struc-
ture from EM data alone.
We are particularly interested in the behavior of marine EMmeth-

ods, although the conclusions we draw from this study apply to ter-
restrial data as well. Although a great deal of marine EM data is
being collected, most of it is proprietary and collected over hydro-
carbon reservoir targets, which do not generate a response in MT
data. Recently developed CSEM processing tools (Myer et al.,
2011) and inversion code (Key, 2012b) prompted us to return to
a joint CSEM/MT data set collected more than a decade ago over
the Gemini salt body in the Gulf of Mexico. These data are some of
the earliest collected using the current generation of marine EM in-
struments. Indeed, the transmitter and most of the receivers used
were prototypes in the development of the more mature systems
described by Constable (2013). However, in spite of their age, these
data are of reasonable quality and present a useful test bed for in-
version because (a) they are publishable, (b) the data have been
processed by the authors from raw time series using publicly avail-
able codes that (c) generate fairly reliable error bars, and (d) they
have MT and CSEM responses available. Furthermore, the Gemini
salt body structure is generally known from drilling and seismic
studies.

INVERSION ALGORITHM

The inversion scheme we use in this study is the Occam algo-
rithm of Constable et al. (1987). The Occam algorithm is one im-
plementation of a regularized inversion approach (often called
Tikhonov regularization [Tikhonov and Arsenin, 1977]) that has
almost become ubiquitous in practical geophysical inversion, in
which a cost function U formed from a weighted sum of data misfit
and model penalty is minimized:

U ¼ kWd −WfðmÞk2 þ λkRmk2; (1)

where W is a weighting matrix of reciprocal data errors acting on
the data vector d and the prediction of the forward functional fðmÞ
at model vectorm. The first term is thus a sum-square misfit, which
will be χ2 distributed for well-estimated, zero-mean, independent,
and normally distributed data errors. The second term is the regulari-
zation on the model, where R extracts some penalty on the model,
usually roughness through a first derivative process, although a vari-
ety of penalties can be used to achieve models with other character-
istics, such as closeness to a prior model or models with a minimum
number of sharp boundaries. The weighting or trade-off parameter λ
balances the penalty between fitting the data and smoothing the
model, and it also acts to stabilize the inversion; for λ ¼ 0, the non-
linear least-squares solution that remains is usually underdetermined
(i.e., there are more model parameters than independent data) and
extremely unstable (linearized solutions will rapidly diverge).
Because the forward functional fðmÞ is nonlinear for the EM

sounding methods discussed below, equation 1 is usually solved
iteratively by linearization around a starting model m0:

U ¼ kWd −Wðfðm0Þ þ Jðm1 −m0ÞÞk2 þ λkRm1k2; (2)

where J is the Jacobian matrix of partial derivatives of each datum
with respect to each model parameter:

Jij ¼
∂fðxi;mÞ

∂mj
: (3)

We have introduced xi to represent the dependent variables describ-
ing the characteristics of the ith datum (frequency, position, complex
component, etc.). The elements of J can be computed analytically, by
differencing, or by an adjoint process. Equation 2 can then be solved
for a model update Δm ¼ m1 −m0.
The scalar λ is essentially a free parameter, but it is one that has a

profound effect on the model produced by minimizing equation 1.
For a small λ, the model becomes very rough to achieve a small data
misfit. For a large λ, the model becomes very smooth at the expense
of fitting the data. One can carry out multiple inversions to explore
the trade-off between misfit and roughness, but this can be computa-
tionally expensive and perhaps even prohibitively expensive for
some 3D inversions of EM data, although some algorithms succes-
sively decrease λ as part of the inversion process. Often in practice, λ
is chosen in a somewhat ad hoc manner based on experience. For
example, Newman and Alumbaugh (1997) extract λ from statistics
derived from the weighted Jacobian based on “extensive numerical
experiments,” and Commer and Newman (2008) set λ equal to a
constant, which one suspects is by far the most common approach.
It is also a common practice to include a penalty against the distance
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from the starting model or a preferred model as well as a roughness
penalty (e.g., Zhdanov et al., 2000), although this introduces a sub-
jective bias in the resulting models.
Even though to some extent the term “Occam’s inversion” has

become synonymous with regularized inversion, probably because
the 1987 paper was the first published practical application of regu-
larization to nonlinear geophysical problems and was accompanied
by public-domain computer code (Constable et al., 1987), it is in
fact only one implementation of the general regularization method
described above. Three aspects of this algorithm differentiate it
from other methods.
First, rather than minimize over the data misfit, the Occam algo-

rithm includes a target misfit χ2%:

U ¼ ðkWd −Wfðm1Þk2 − χ2%Þ þ λkRm1k2: (4)

The philosophy behind this is that with well-estimated data errors, a
fairly objective estimate of reasonable data fit can be made based on
the statistics of the chi-squared distribution, such as the expectation
value or the 95% confidence value (although for large data sets, the
difference between these is small). One practical aspect of introduc-
ing χ2% is that the data misfit is not implicitly dependent on an initial
choice of λ, but it is explicitly dependent on the choice of χ2%. An-
other aspect is that if χ2% can be achieved by the inversion process,
the misfit term goes to zero and the algorithm can converge to a
solution that minimizes model roughness. Of course, there is no
guarantee that the minimum is a global, rather than a local, mini-
mum, and there is a lot of flexibility in how roughness is quantified
(that is, how R is constructed), but experience suggests that because
the Occam algorithm does not regularize against the starting model,
if the starting model is simple (a half-space, for example), then the
solution does not usually depend on the value of the starting model.
Second, rather than solving equation 2 for Δm, the Occam algo-

rithm solves for the next model in the iterative series:

m1 ¼ ½λRTRþ ðWJÞTWJ'−1ðWJÞTWðd − fðm0Þ þ Jm0Þ:
(5)

This algorithm takes large steps through model space, aggres-
sively reducing the misfit, which reduces the number of iterations
required to converge on a solution. This is desirable because for
nonlinear Newton-type algorithms, a new J needs to be computed
at each iteration, a computationally expensive process for higher
dimensional models. It can be seen from equation 5 why the regu-
larization term stabilizes the solution; for 1D models, R is bidiag-
onal, and it improves the condition of the matrix inversion.
Third, the distinguishing feature of the Occam algorithm is the

method for choosing λ. Instead of choosing λ arbitrarily or by some
derived statistic, it is obtained by a 1D optimization of χ2 versus λ at
each iteration, using a mechanism such as a golden section search.
Before the target misfit is achieved, λ is optimized to reduce the
misfit as much as possible from the last iteration (phase 1). Once
the target misfit is achieved, λ is optimized to produce the smoothest
model (that is, to minimize the model penalty term), and if all goes
well, the iterative process will converge and Δm will go to zero
(phase 2) (see Constable et al. [1987] for details). These optimiza-
tions typically cost 5–10 matrix inversions and forward calculations
at each iteration, but combined with solving directly for miþ1

greatly reduces the number of iterations required to reach a solution

(to of order 10 for typical 2D MT problems). Importantly, the final
model depends on the choice of χ2% rather than a choice of λ.
Figure 1 presents a cartoon of this behavior for a two-parameter

problem. The figure illustrates that a small efficiency might be
achieved by making a less abrupt transition from phase 1 to phase
2, but the more important point is that the algorithm needs to be run
to convergence, and not just to the target misfit. A common mistake
in the use of the algorithm is a failure to let the algorithm converge
after the target misfit is obtained, which will result in models that
are not maximally smooth for a given misfit.
In the next sections, we will apply the Occam algorithm repeat-

edly to a set of marine EM data collected in the Gulf of Mexico, to
explore the dependencies of the model on data type and target mis-
fit. The implementation of the inversion algorithm that we use is
described in Key (2012b). This computer code uses a 2D unstruc-
tured finite-element mesh with adaptive refinement to ensure the
accuracy of the forward calculations and is configured for CSEM
and MT data. It allows anisotropy in the principal model directions
and uses a parallelized architecture to speed execution time on mul-
ticore computers or clusters. All inversions presented in this paper
were carried out on an eight-core Macintosh desktop having a proc-
essor speed of 2.93 GHz.

MT DATA COLLECTION
AND PROCESSING

MT data were collected over the Gemini prospect in 1997, 1998,
2001, and 2003, during campaigns to develop the marine MT instru-
ment described in Constable et al. (1998). Details of the data col-
lection and processing are given in Key et al. (2006); for this work,
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Figure 1. Diagrammatic representation of the Occam algorithm’s
path though model space, reduced to a sum-squared misfit for a
two-parameter problem. Initial iterations reduce the sum-squared
misfit χ2 until the acceptable misfit χ2% is reached. The algorithm
then reduces the roughness in the model until it converges on
the smoothest model that fits the data to χ2%. The diagonal broken
line represents the set of maximally smooth models.
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we are using data collected on “line A” described in that paper. De-
ployments were typically of about two days’ duration, and the data
quality varied considerably depending on the state of instrument
development and geomagnetic activity. The data were processed us-
ing the multistation transfer function estimation code of Eg-
bert (1997).
The Gemini salt body is a complex, 3D structure, but the line of

stations we use here is perpendicular to a fairly 2D northwest–
southeast-trending ridge in the top-salt surface (Figure 2). An inter-
pretation of seismic reflectivity shows a deep (7000 m) root in the
salt to the northwest of line A, but a 3D inversion of the entire MT
data set by Zhdanov et al. (2011) shows little evidence of resistive

salt below approximately 5000 m, suggesting that MT data are not
particularly sensitive to this feature (or that the seismic interpreta-
tion is not correct). The data are largely 1D in appearance with little
separation between modes, but Key et al. (2006) show that 2D in-
version did a good job of recovering structure as long as the mode
with electric field perpendicular to the top-salt ridge was used. We
follow their example to use only data that they called “inline elec-
tric” and inverted these as the transverse magnetic mode of the 2D
MT nomenclature. These data are shown in Figure 3; there are 169
apparent resistivity and phase pairs distributed across 16 stations.
The data were truncated at 3000-s periods to reduce sensitivity
to large-scale 3D structures associated with bathymetry and coast-
lines.
An important aspect of data processing is error estimation; inver-

sion algorithms weight all data by their errors, so it is easy to see
that the data error is equally as important as the actual data value. It
has been shown that the algorithm of Egbert (1997) generates error
estimates that are reasonably consistent with the variance from re-
peat sampling of marine MT data (Sherman et al., 2013), although
we apply an error floor of 5% in resistivity and 1.45° in phase in
recognition of the limitations in the forward model complexity. The
maximum error in the MT apparent resistivities is 29%, and the
mean is 6%. The maximum error in the phase is 8.3°, and the mean
is 1.7°.

CSEM DATA COLLECTION AND PROCESSING

The marine CSEM data presented here were collected in January
2003 from the R/V Gyre. Fifteen receiver instruments were de-
ployed along line A of the MT array, three configured as MT instru-
ments with magnetometers, and twelve as instruments collecting
electric field data only. The sampling rate was 31.25 Hz. All instru-
ments were the Mk II version described by Constable (2013), fitted
with 24-bit analog-to-digital converters. Receiver navigation after
deployment was carried out using long-baseline acoustic ranging
from the vessel. The prototype recording compasses that were used
for instrument orientation did not perform particularly well, and so
instrument orientations were estimated from the morphology of the
MT and CSEM data.
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Figure 2. Locations of MT sites, CSEM receiver sites, transmitter
sites, and well 8806/3 overlain on the top-salt depth (the salt geom-
etry is courtesy of Chevron). The red square in the inset shows the
location of the prospect in the Gulf of Mexico.
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This experiment was the first test of a prototype 200-A Scripps
Undersea Electromagnetic Source Instrument. This system consists
of a topside 30-kW power supply that transmits 2000 V, 400-Hz
power down a coaxial, 17-mm cable to an instrument that is towed
about 100 m above the seafloor. This deep-towed instrument trans-
forms the high voltage to low voltage, rectifies it, and switches the
polarity at relatively low frequency for transmission into the sea-
water through a 50–300-m antenna. Further details are given in
Constable (2013). In this case, the transmitter was fitted with a
150-m, neutrally buoyant antenna cable and navigation was accom-
plished using a Kongsberg-Simrad ultrashort-baseline (USBL)
acoustic system, with a standard acoustic head and motion reference
unit mounted in the ship’s well and tilted backward 20°. The vessel
did not have an installed deep tow winch, and so, a 17-mm coaxial
deep-tow cable and winch was rented for the project. Because this
was the first use of the transmitter, we operate at half of the 2000
VAC maximum cable voltage, providing a zero to peak output cur-
rent of 95 A. The waveform was the “Cox” waveform described in
Constable and Cox (1996) and Myer et al. (2011), with a nominal
fundamental frequency of 0.25 Hz. This waveform generates first,
third, and seventh harmonics with amplitudes of 0.788, −0.788, and
−0.208 times peak current. Unfortunately, we had not yet imple-
mented GPS-stabilized power frequency control, and so, the fre-
quency of the 400-Hz power was controlled by the internal
oscillator of the topside power unit. The power supply oscillator
drifted by approximately nine parts per thousand and was suffi-
ciently unstable around this value that useful phase data could
not be recovered from the receiver instruments. The data described
below are thus only electric field amplitudes. We had intended to

carry out several passes over the line of instruments, increasing
transmission current and changing frequency, but during the turn
at the end of the first pass, the rented winch freewheeled and
dropped the transmitter and tow cable to the seafloor. These were
recovered by dragging using a trawl cable guided by the USBL nav-
igation, but the system was no longer suitable for continued work on
this experiment afterward.
The data were processed using the algorithm of Myer et al.

(2011), dividing the time series into 4-s windows (one cycle of
the transmitted fundamental frequency) for Fourier transformation
and averaging 30 of these windows to provide data sampled every
120 s. (A phase correction was applied to ensure that the transmitter
phase drift did not corrupt the synchronous stacking.) There are sev-
eral advantages to this approach, the most important being that the
standard error in the mean can be computed for every individual
data point. This not only provides objective error estimates, but
it tracks any nonstationarity in environmental and instrumental
noise. However, an error floor of 4% was applied to capture uncer-
tainties in calibration, navigation, and the model approximations,
and data with errors greater than 40% were excluded. Data at
the three frequencies are shown in Figures 4–6. The average
errors at 0.25, 0.75, and 1.75 Hz are 11.6%, 14.7%, and 22.7%,
respectively.

INDIVIDUAL MT AND CSEM INVERSIONS

As a first test of the data error estimation and validity of the 2D
approximation, we inverted each data subset (MT and each CSEM
frequency) using an isotropic inversion starting at a 1-Ωm half-
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misfit for this data subset is 0.836.

Which model do you want? E201

D
ow

nl
oa

de
d 

05
/2

8/
15

 to
 1

32
.2

39
.1

53
.2

4.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s o
f U

se
 a

t h
ttp

://
lib

ra
ry

.se
g.

or
g/



−13.5

−13

−12.5

−12

−11.5

−11

−10.5

−10

0.75 Hz

10 12 14 16 18 20 22 24 26
–6

–4

–2

0

2

4

N
or

m
al

iz
ed

 r
es

id
ua

l

rms 0.911

Transmitter position (km)

E
−f

ie
ld

 a
m

pl
itu

de
 (

V
/A

   
  )

m
2

Figure 5. Marine CSEM data at the 0.75-Hz harmonic as a function of the transmitter position. The model response and normalized residuals
are from an anisotropic inversion fitting the entire CSEM and MT data set to rms 0.90 and shown in Figure 12. The rms misfit for this data
subset is 0.911.

−13.5

−13

−12.5

−12

−11.5

−11

−10.5

−10

1.75 Hz

rms 0.853

10 12 14 16 18 20 22 24 26
–6

–4

–2

0

2

4

6

N
or

m
al

iz
ed

 r
es

id
ua

l

Transmitter position (km)

E
−f

ie
ld

 a
m

pl
itu

de
 (

V
/A

   
  )

m
2

Figure 6. Marine CSEM data at the 1.75-Hz harmonic as a function of the transmitter position. The model response and normalized residuals
are from an anisotropic inversion fitting the entire CSEM and MT data set to rms 1.20 and shown in Figure 12. The rms misfit for this data
subset is 0.853.

E202 Constable et al.

D
ow

nl
oa

de
d 

05
/2

8/
15

 to
 1

32
.2

39
.1

53
.2

4.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s o
f U

se
 a

t h
ttp

://
lib

ra
ry

.se
g.

or
g/



space, choosing an unrealistically small target misfit. We ran each
inversion until no significant improvement in misfit occurred. The
resulting misfits are documented in Table 1, which also shows the
starting misfit associated with the 1-Ωm half-space. Figure 7 shows

CSEM single-frequency and MT models rerun to converge for mis-
fits that are chosen to be close to the minimum achievable, to dem-
onstrate the depth sensitivity and the kind of conductivity structures
that are required to fit the data. It can be seen from the model plots
that the depth of investigation of the CSEM data clearly decreases
with frequency, but interestingly, the 0.75-Hz data are not as well fit
as the other frequencies nor does the 0.75-Hz model exhibit as much
structural complexity. On the other hand, the three CSEM frequen-
cies are sensing similar structural patterns that are also compatible
with the shallowest part of the MT model. Deeper in the section, the
MT model shows the salt body between a 2- and 4-km depth and a
basement at a 6-km depth. That the minimum misfits from inver-
sions of individual data subsets are all below a normalized rms mis-
fit of 1.0 (the expectation value) suggests that our error estimation
has been reasonably successful and that the 2D approximation is
adequate to fit the data. The use of an error floor introduces some
subjectivity into the error estimation, but the error floors used here
are based on many years of experience.

ISOTROPIC JOINT CESM/MT INVERSIONS

Having demonstrated that the individual data subsets can be in-
verted to compatible and reasonable misfits, we combined all three

Table 1. Misfits of the various data subsets and
combinations, where rms start is the starting half-space of
1 Ωm, rms min. is the best achievable misfit for inversions of
the individual data subsets, and rms aniso. is the misfit of
the individual data subsets for the best-fitting (rms ! 0.90)
joint anisotropic model shown in Figure 12.

Inversion rms start rms min. rms aniso. No. data

MT only 4.926 0.996 1.083 338
0.25-Hz CSEM 6.275 0.773 0.836 675
0.75-Hz CSEM 12.972 0.986 0.911 453
1.75-Hz CSEM 9.000 0.579 0.853 303
3-freq. CSEM 9.434 0.934 — 1431
All data 8.754 1.057 0.900 1769
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Figure 7. (a-c) Isotropic models from individual CSEM frequencies and (d) MT-only data inverted for misfits close to the minimum achievable
as noted in Table 1. The locations of the receivers are shown by white circles, and the transmitter locations are white triangles.
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CSEM frequencies, and we also combined MT and all CSEM data.
One problem that arises when CSEM and MT data are jointly in-
verted is that the number of CSEM data points almost always ex-
ceeds the number of MT data points by a considerable amount (here
1431 data versus 338 data; see Table 1). Application of the standard
Occam algorithm often produces a bias in the individual compo-
nents of the misfit in favor of the CSEM data. For example, for
an overall misfit of rms 2.0, the CSEM data fit to rms 1.65, and
the MT data fit to rms 3.06 using an unmodified inversion. We ad-
dress this problem by scaling the weight matrix Wi of the ith data
subset by

ffiffiffiffiffiffiffiffiffi
1∕ni

p
, where ni is the number of data in the subset, thus

ensuring that both data subsets are fit to approximately the desired
tolerance.
We started by inverting the joint data sets to minimum misfits

(given in Table 1) using isotropic models. The three-frequency
CSEM model and a joint CSEM and MT model are shown in
Figure 8. The minimum misfits are close to rms 1.0 for the multi-
frequency CSEM and the joint MT/CSEM data sets. This is barely
larger than the single-component inversions, suggesting overall
compatibility between all of the data components.
The effect of combining CSEM frequencies is profound

(Figure 8a). The salt body, barely visible as a smudge in the
0.25-Hz inversion and completely absent from the higher frequency
inversions, is now pronounced, with a well-defined top and even a
reasonably defined base. The conductive region evident in the 0.25-
and 0.75-Hz inversions has now developed into a narrow conductive
layer draped over the salt body, suggestive of brines associated with
the salt. The shallow resistive layers to the northeast and southwest
of the salt, diffuse in the single-frequency inversions, are now de-
veloped as thin layers overlying the conductive feature. The resis-
tivity of the deep section has increased from approximately 1 to 2–
3 Ωm, but this is likely a result of the regularization “bleeding” the
higher salt resistivity into the unresolved parts of the model. This
apparent improvement in resolution is presumably a consequence of
moving from the purely geometric data distribution of a single-fre-
quency amplitude sounding to a sounding that includes parametric,
or mixed frequency, information with a mixture of skin depths.
The joint inversion of all data (Figure 8b) looks at first glance to

be similar to the MT-only inversion (Figure 7b), but there are sig-

nificant differences. The resistivity of the salt body has increased
from approximately 20 to nearly 200 Ωm, although the overall
shape has remained similar. The shallow conductive and resistive
layers seen in the CSEM inversion are evident, but the shallowest
part of the section has broken into a confused structure of alternat-
ing conductors and resistors. This is symptomatic of incompatibil-
ities in the data associated with MT sensitivity to horizontal
conductivity and CSEM sensitivity to vertical resistivity, which
we will address in the section on anisotropy below, but it may also
be due to overfitting the data by requesting a misfit close to the
minimum obtainable.
Interestingly, although the CSEM data clearly do not have any

sensitivity below approximately a 5-km depth, there are significant
changes at much deeper depths in the joint model compared with
the MT-only inversion. This may be interpreted in terms of the
CSEM data placing additional constraints on the near-surface struc-
ture that must be accommodated by the MT data. Changing the
near-surface structure seems to have prevented the MT data from
allowing the structure to leak into the basement resistor through
the regularization penalty. The overall effect is that the basement
resistor is now more laterally continuous, which may be regarded
as a more plausible model.
Although our ability to fit the joint data sets close to rms 1.0 is

consistent with our error estimates and 2D model assumption, fit-
ting the data to the minimum possible misfit is very likely to result
in a structure that had developed largely as an attempt to fit noise in
the data. We therefore examined the trade-off between the data mis-
fit and model complexity for the joint MT/CSEM data set. We
started the inversion exercise by inverting the data from an isotropic
half-space of 1 Ωm to a conservative misfit of rms 2.4, being sure to
allow the inversion to converge to the smoothest model. The inver-
sion was restarted from this model and allowed to converge to a
target misfit of rms 1.7, then this model was restarted with a target
of rms 1.3, and so on. A sample of the results is shown in Figure 9,
and the individual component misfits and roughness measures are
given in Table 2.
These models provide some sense of which features are required

even when large amounts of data misfit are tolerated and how the
model complexity increases with decreasing data misfit. The fea-
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Figure 8. Isotropic models from joint inversion of (a) all CSEM frequencies and (b) all CSEM and MT data for misfits close to the minimum
achievable as noted in Table 1.
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tures that first appear are the basement, salt, conductor overlying the
salt, and a resistive layer about 500 m below the seafloor. It is
reassuring that some important aspects of geologic interpretation,
such as the fact that the salt appears not to be rooted, are evident
in the most conservative misfits. However, if a quantitative estimate
of the depth to base of the salt or basement is to be made, a better
level of data fit is required.
Decreasing the misfit increases the resistivity contrasts, making

conductors more conductive and resistors more resistive, as well as
causing the near-surface structures to break up into small patches of
conductive and resistive material. Although it seems reasonable to
assume that the smallest misfits are demanding the inclusion of a
spurious structure, how one reasonably chooses a combination of
misfit and model complexity is not at all clear. One approach is
to relax the misfit from the expectation value of rms 1.0 to some-
thing more conservative, such as the 95% cumulative probability of
the chi-squared distribution (Smith and Booker, 1988). Unfortu-
nately, with such a large data set, the chi-squared distribution is nar-
rowly peaked around rms 1.0, and in this case, it gives a 95% value
(rms ¼ 1.03), which is not significantly different from the expect-
ation value.
A trade-off curve of misfit as a function of roughness is often

used as a guide for choosing the optimum misfit. Lowering the mis-
fit demands increasing amounts of model complexity, and trade-off

plots usually exhibit the characteristic “L” shape from which these
curves take their name. The argument is often made that the “knee”
of the L-curve provides an optimal trade-off between misfit and
model complexity. There is considerable mathematic literature on
the subject of L-curves, but even in the simpler case of linear sys-
tems, the arguments for choosing the knee lack mathematic rigor.
Thus, for example, Hansen (1992) states that “It seems intuitively
clear that a good regularization parameter λ is one that corresponds
to a regularized solution near the ‘corner’ of the L-curve because
this region is a good compromise between achieving a small
residual norm and keeping the solution seminorm reasonably
small.” Constable (1993) makes the case that there is nothing spe-
cial about the knee because it moves around as you change the scal-
ing of the axes (rms versus sum-squared misfit; linear versus
logarithmic model roughness). The largest effect, however, is the
range over which one computes the data, which is demonstrated
in Figure 10. The knee of the curve moves from rms 1.2 to rms
1.4 to rms 2.0 as the range of models varies. By plotting the curves
against χ2 rather than the rms misfit, the range of candidate knees
can be extended to rms 2.4. Clearly, these curves provide no objec-
tive way to choose the misfit, although they represent the general
range of model space we are exploring; an examination of Figure 9
shows that they span models that appear underfit and too smooth to
models that appear overfit and too rough.
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Figure 9. A sample of joint CSEM/MT isotropic inversions as a function of target misfit.
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ANISOTROPIC JOINT CSEM/MT INVERSIONS

Deepwater inline CSEM data are mainly sensitive to the vertical
electrical resistivity ρz (e.g., Constable, 2010), whereas marine MT
data not strongly influenced by coastlines are mainly sensitive to
horizontal conductivity σy. (Broadside CSEM data are also sensitive
to horizontal conductivity, but such data are not available here.)
Thus, if there is any anisotropy in the sedimentary section at Gemini
there will be an incompatibility in the CSEM and MT data sets,
similar to the incompatibility of inline and broadside CSEM modes
(e.g., Lovatini et al., 2009). Constable (2010) notes that when fitting
CSEM data to better than 10%–15%, the assumption that inline data
are only sensitive to vertical resistivity is likely to break down, es-
pecially if using amplitude and phase at multiple frequencies. The
CSEM data we are considering here may not reach this threshold of
quality; even though we are inverting multiple frequencies, we do
not have a phase component, and our average error is about 15%.
However, the addition of MT data is causing rapid variations in
near-seafloor resistivity that are symptomatic of the inversion at-
tempting to create macroscopic anisotropy. Our next step is thus
to add anisotropy to the modeling.
It is important to realize that by including anisotropy, we are dou-

bling the number of model parameters, and unless the data can con-
strain the amount of anisotropy, the inversion will use this freedom
to create two independent models to fit the data with minimal regu-
larization cost. It is therefore necessary to provide some constraint
on anisotropy, and one convenient way to do so is to add a regu-

larization penalty between the vertical and horizontal resistivities.
This, however, creates an additional free parameter that controls
how the inversion performs, with no a priori way to choose it (es-
sentially a second Lagrange multiplier λ in equation 2). In Figure 11,
we present three anisotropic inversions with different relative
weighting between the smoothness penalty and the penalty between
vertical and horizontal resistivity. We choose a misfit level of rms
1.2, based on a visual assessment of the models in Figure 9 and
supported by measures of randomness in the residuals presented
in the next section.
For a relatively weak penalty of 0.1, the vertical and horizontal

resistivities are largely independent. The salt body is completely
absent in the vertical resistivity (indeed, it appears as a slight con-
ductor), which is implausible. The basement is also almost absent in
ρz, reflecting a high degree of anisotropy, which is also unlikely, but
it is understandable because the MT data have little sensitivity to
vertical resistivity and the CSEM data have little sensitivity at base-
ment depths. At the other extreme, a relative weight of 10 recovers
the isotropic model with almost no discernible anisotropy, defeating
the purpose of using an anisotropic inversion. A relative penalty of
1.0 produces a pleasing result, with the basement appearing as an
isotropic resistor, having only a little anisotropy in the salt, and the
shallow sediments appearing with a slightly higher vertical than
horizontal resistivity, which is normal for horizontal bedding. Aes-
thetic attraction, however, represents additional input to the inver-
sion, and the reader is reminded that because all three models fit the
data equally well, the data alone provide no information on the ex-
tent of anisotropy.
As the penalty between horizontal and vertical resistivity is in-

creased, the freedom of the models to fit the data is constrained, and
the models get rougher. Thus, the models in the middle column of
Figure 11, with a misfit of rms 1.2 and a penalty of 1.0, appear to
have about the same level of complexity as the isotropic inversion
with an rms misfit of 1.7 (Figure 9b). Put another way, allowing a
modest amount of anisotropy allows the inversion to fit the data
better, and in Figure 12, we explore the effect of decreasing the
misfit while maintaining a relative penalty of 1.0 between the hori-
zontal and vertical resistivities (which are parameterized as loga-
rithms). At the cost of increased complexity, we can fit the
entire data set to rms 0.9, or about 10% better than using an iso-
tropic inversion. One should not infer from our ability to fit the data
better using an anisotropic inversion that the earth is truly aniso-
tropic; we may be using the enlarged model space to fit noise or
3D effects in the data better. For example, returning to Figure 11,
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Figure 10. Plots of rms misfit versus model roughness for isotropic inversion of the combined CSEM and MT data set (L-curves). The knee of
the curve is a function of the range of data plotted.

Table 2. Total misfit, data subset misfits, and roughness
measure (arbitrary units) for isotropic joint inversion
models, four of which are shown in Figure 3.

Total misfit CSEM misfit MT misfit Roughness

2.4 2.42 2.29 32.6
1.7 1.73 1.58 70.1
1.5 1.52 1.42 97.8
1.3 1.31 1.26 179
1.2 1.2 1.22 233
1.11 1.09 1.17 427
1.06 1.04 1.14 491

E206 Constable et al.

D
ow

nl
oa

de
d 

05
/2

8/
15

 to
 1

32
.2

39
.1

53
.2

4.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s o
f U

se
 a

t h
ttp

://
lib

ra
ry

.se
g.

or
g/



at a penalty weight of 0.1, there is significant anisotropy in the salt
and basement that is not likely to be representative of the geology.
We could restrict anisotropy to the sediments by using a relative
penalty that increased with resistivity, but there are geologic circum-
stances where there will be anisotropy in the more resistive part of
the section (such as interbedded volcanic flows).

STRUCTURE IN RESIDUALS

We have shown that we are able to fit our data set, separately and
collectively, to about rms 1.0, the expected misfit. This is encour-
aging, but we should examine the structure of the residuals for any
systematic effects, outliers, and bias toward one component or an-
other. In Figure 3, we plot the MT response of the rms 0.9 joint
anisotropic model, the best-fitting inversion for the combined data
set. We also plot normalized residuals for amplitude and phase as a
function of site. The residuals are of uniform size between sites and
show no particular bias as a function of frequency. There are no
egregious outliers, although the highest frequency resistivities of
sites 3 and 6 produce residuals of nearly −4. Figure 13 shows histo-

grams of normalized residuals for MT resistivity and phase. MT
phase data are fit a little better than resistivity data, but not by a
large amount (rms 0.98 versus rms 1.18). The MT residuals pass
a Kolmogorov-Smirnov (K-S) test for normality at a significance
level of 95%, collectively and separately for amplitude and phase,
and the mean of the residuals is indistinguishable from zero.
In Figures 4–6, we plot normalized residuals for the CSEM data

as a function of transmitter position, again for the rms 0.9 aniso-
tropic model response. There is some serial correlation evident with
a length scale of approximately 1 km and one egregious outlier in
the 1.75-Hz data at a transmitter position of 18.5 km. There is some
evidence that the long-range data at the end of the tow are being fit
better than are shorter range data, which is consistent with errors in
the transmitter and/or receiver navigation. However, the misfit is
evenly distributed across the three frequencies, more so than for
the inversions of individual frequency data. The histograms of
the residuals, plotted in Figure 13, are visually similar to a normal
distribution, but they do not pass a K-S test against a normal dis-
tribution. The residuals for the 0.25-Hz data are indistinguishable
from zero-mean, but for the two higher CSEM frequencies, which
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Figure 11. Joint CSEM/MT anisotropic inversions for an rms misfit of 1.2, as a function of relative penalty between ρz and ρy. Panels (a-
c) show horizontal resistivity as a function of penalty, panels (d-f) show vertical resistivity, and panels (g-i) show the anisotropy ratio log
(ρz∕ρy).
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have mean residuals of 0.3 and 0.2, respectively, the mean residuals
are three or four times the error in the mean. Collectively, the com-
bined MT and CSEM residuals have a mean indistinguishable from
zero, but they do not pass a K-S test.
Our ability to fit the combined CSEM/MT data set to a little better

than rms 1.0, with residuals that are largely normal, evenly distrib-
uted across the data, and zero mean might suggest that the rms 1.0
anisotropic inversion in Figure 12 is optimal. Certainly, it implies
that we have done a reasonable job of error estimation, but a 10%
increase or decrease in the overall error size would allow us to de-
clare any of the models in Figure 12 as optimal. Furthermore, it is
essentially impossible to quantify how well the 2D geometry ap-
proximates the real geology. We are, again, reduced to subjective
decisions about what represents a reasonable amount of model com-
plexity.
It is very convenient to measure the quality of models using a

global measure such as the rms misfit. Indeed, the sum-squared mis-
fit is essential to the optimization machinery we use to construct the
models. However, besides assuming that the data errors are nor-
mally distributed and zero mean, our starting assumptions included
independence between data errors. That is, the residuals should ap-
pear random, particularly as a function of position (for CSEM data)
or period (for MT data). Figure 14 shows residuals for the best-fit-
ting isotropic model (rms ¼ 1.06) as a function of CSEM source-
receiver range and MT period, and a similar plot for a poorly fitting
model (rms ¼ 2.40). Apart from increased scatter, the poorly fitting
model has a lot of structure in the residual plots, with evident serial
correlation in the residuals as a function of range or period. This
suggests that we should search for some measure of this serial cor-
relation that might provide an indication of when an adequate fit to
the data has been achieved.
One good statistical test for serial correlation or randomness is

the one-sample runs test (e.g., Crow et al., 1960). This test examines

the sign of the residuals as a function of the source-receiver offset or
period: Many consecutive residuals with the same sign indicate
nonrandomness or serial correlation. In Figure 15, we plot the frac-
tion of data subsets (in red) that pass the runs test at the 95% con-
fidence level as a function of misfit. (The total number of data
subsets is 74, and the data in Figure 15 come from isotropic fits
with the exception of the rms ¼ 0.9 data point, which is from an
anisotropic inversion.) Unfortunately, about a quarter of the data
subsets of even the best-fitting anisotropic model fail the runs test
because there is a residual structure within the residuals, especially
the CSEM data. There is not a particularly large change in the frac-
tion of subsets that fail the runs test as we improve the misfit.
A related statistic is the probability that the entire data set is not

random, again using the runs test (Figure 15, green line). Again,
even the best-fitting model has only a 50% chance of having ran-
dom residuals, and there is not much structure to the curve as a
function of misfit, although there is a small change of slope at
around rms ¼ 1.2.
One of the statistical assumptions is that the error process is zero

mean. In blue, we plot the mean of the residuals (scaled by two to fit
better in the figure), and here we do see a significant improvement
as a function of decreasing misfit, with the mean residual decreasing
from about 2.3 to 1.2. However, the curve is close to a straight line,
providing little guidance as to when we may be reaching a critical
threshold in the structure of the residuals.
Similarly, the average slope of least-squares line fits to the data

residual subsets (shown as black lines in Figure 14) normalized by
the error in the slope’s estimation shows a monotonic improvement
with improving misfit, with no obvious break point (Figure 15, light
blue). However, taking an approach similar to that of Constable and
Cox (1996), if we consider the number of data subsets for which the
least-squares slope exceeds the error in the slope (the black line in
Figure 15, scaled by 10 to fit the figure), we see that the number of
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Figure 12. Joint CSEM/MT anisotropic inversions for rms misfits of 0.9, 1.0, and 1.1, all with a relative penalty between ρz and ρy of 1.0.
Panels (a-c) show horizontal resistivity as a function of misfit, and panels (d-f) show vertical resistivity.
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Figure 13. Histograms of normalized residuals for all data subsets from an anisotropic inversion fitting the entire CSEM and MT data set to
rms 0.90 and shown in Figure 12.
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data subsets falls from 14 to four, with a rapid decrease at rms ¼ 1.2
followed by no change with a lower misfit. Entirely heuristically,
this may be an indication that at around rms ¼ 1.2, we obtain a
sudden decrease in the structure of residuals with little improvement
after that.

WHAT IS TRUTH?

The purpose of this paper is not to discuss Gulf of Mexico geol-
ogy, but it is useful to compare the EM inversion models with what
is known about structure in the Gemini area to obtain some idea of
what might be an inversion artifact and what might be driven by a
real structure. In Figure 16, we overlay seismic reflectivity on the

rms ¼ 1.0 joint MT/CSEM anisotropic model to look for structure
that correlates between the two (very different) geophysical meth-
ods. As Key et al. (2006) observe from MT-only inversions, the
shallow, thick part of the salt body is fairly well resolved. The sep-
aration between the salt and basement structure is better than for the
MT-only inversion. Interestingly, it is only the joint anisotropic in-
versions that place a resistor at the deeper, thinner salt to the south-
west: The isotropic inversions presented here place this resistor
above the salt, which is too shallow in the section. The pronounced
conductor draped over the salt is not evident in the MT-only inver-
sions, in spite of the conventional wisdom that MT is preferentially
sensitive to conductors, and this suggests that brines have accumu-
lated above the shallower parts of the salt body. This is evident in
the well logs. Figure 17 shows the well log from OCS-G-8806, re-
drawn by hand from a scanned version of the 14-m-long original
hardcopy provided by the Bureau of Ocean Energy Management.
A 400–500-m-thick layer of 0.3 Ωm sediment immediately overlies
the salt body, in fairly good agreement with the inversions.
Although the log is saturated over much of the salt section, the salt
appears to be around 20 Ωm or more, again in agreement with the
inversions.

DISCUSSION

On the order of 100 inversions were carried out as part of this
study. Early inversions were used to define the minimum source-
receiver ranges at which the CSEM data were unaffected by nav-
igation errors and amplifier saturation (we were still using amplifier
gains of 106 when these data were collected), as well as allow us to
refine the forward model dimensions and parameterization. Many
inversions explored aspects of model complexity versus misfit
beyond the representative examples presented in this paper. To il-
lustrate how regularized inversion depends on misfit, data type,
model parameterization, and regularization parameters, we have
run a broader range of inversions than would normally be examined
during “routine” inversion of a geophysical data set. However, we
use the results shown here to make the case that to fully understand
a geophysical data set and derive a meaningful model using inver-
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Figure 15. Various tests of structure in the data residuals binned by
data subset as illustrated in Figure 14: red, the fraction of subsets
that pass a runs test; green, probability that the ensemble of data
subsets is nonrandom based on the runs test; dark blue, the mean
of the residuals (divided by two for plotting); light blue, average
absolute value of the slopes of least-squares line fits to data subsets,
normalized by standard error in the slopes; black, number of data
subsets in which the slope divided by its standard error is greater
than 1.0 (divided by 10 for plotting).
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Figure 16. Overlay of seismic reflectivity (courtesy of Chevron) on rms 1.0 anisotropic inversions of joint MT/CSEM data set: (a) horizontal
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sion algorithms, many inversions need to be run. We have generated
dozens of models, all different, that, based on misfit, could reason-
ably be considered compatible with the data we have collected, and
even so, we have used only one type of inversion algorithm. Other
algorithms and regularization schemes will produce a different suite
of models.
The computational cost of current 3D inversion technology

would make such an extensive exploration of model and misfit
space expensive, perhaps prohibitively so, although we certainly
expect that in the future this will improve. The danger associated
with running a single, or a small number, of inversions is that the
resulting structures might be considered representative of the real
earth, when in fact they may be more representative of model pa-
rameterization, data error structure, or some other characteristic.
One-dimensional inversion is extremely rapid, but it does not ad-
dress issues of site-to-site consistency of data structure and error

structure. We suggest that 2D inversion provides an effective
way to explore an EM data set before the computational cost of
3D inversion is expended.
Our study has demonstrated the value of inverting multi-

component EM data, in particular multiple frequencies of CSEM
data. It is easy to think of marine CSEM sounding as dominated
by geometric parameters, given its resemblance to dipole-dipole re-
sistivity and the relationship between the source-receiver offset and
target depth, but clearly, the role of skin depth is important. The
value of using multiple frequencies has already been demonstrated
for 1D inversion (Key, 2009), but the effects in 1D are modest com-
pared with what we observe in the 2D inversions presented here.
Unfortunately, the vintage of the data used in this study did not al-
low us to examine the role of the CSEM phase, but we note that this
amplitude-only data set is representative of many early commercial
data sets.
The value of joint MT and CSEM inversion has long been rec-

ognized, since at least the 1970s (Vozoff and Jupp, 1975). One chal-
lenge to the use of combined MT and CSEM data in the marine
environment is creating an overlap in the depth sensitivity of the
methods. This is maximized by increasing the frequency of the
MT responses in spite of the red spectrum of source-field energy
and the attenuating effects of seawater and increasing the source-
receiver offsets of the CSEM data. However, one of the interesting
results of our study is that by providing constraints on the near-sur-
face conductivity structure from CSEM data, the deeper structure
sensed by the MT data is modified over MT-only inversions in ways
that subjectively appear to be improvements (higher resistivity in
the salt body and more uniform resistivity in the basement).
Although we emphasize the value of careful error estimation, the

use of objective statistical guides to choose optimal misfit levels
(expectation value, 95% confidence levels, etc.) requires an accu-
racy of error estimation and fidelity of the model approximations
that are rarely, if ever, achieved in practice, and this study is no
exception. Although errors are often close to Gaussian, they almost
always lack independence as a result of systemic effects in the data
collection and processing. This distinguishes real-world data inter-
pretation from synthetic model studies. We have shown that the so-
called L-curves can be heavily biased by plotting parameters and are
of little use. However, structure in the residuals as a function of the
CSEM source-receiver offset or MT frequency can be used as a
guide to an adequate fit, and in particular, a significant slope to
the residuals may pass through a threshold associated with dimin-
ishing returns in the roughness-misfit trade-off. But, like the
L-curve knee, this is somewhat heuristic.

CONCLUSIONS

There exists an old joke: The exploration manager asks a geolo-
gist, engineer, and a geophysicist what 2þ 2 is. The geologist re-
plied “somewhere between 3 and 5,” the engineer replied “about
3.99,” and the geophysicist replied “what answer do you want?”.
The joke is somewhat cruel to all three disciplines, but it does
highlight the problem of nonuniqueness in geophysical inversion.
However, a thorough exploration of model space, along with careful
choice of data error structure and examination of misfit residuals
can help the interpreter understand which features of the models
are reliable and which are potentially a result of overfitting the data.
Introduction of geologic information, other data constraints, and
common sense is an important part of geophysical interpretation.
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Figure 17. Well log from well OCS-G-8806 number three, redrawn
by hand.
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For example, it was surprising to see how poorly anisotropy was
constrained by our data set, but the introduction of sensible limits
on anisotropy based on geologic principles would quickly eliminate
the extremal models. It is likely that the inclusion of 3D CSEM data
would also constrain anisotropy better than the 2D example pre-
sented here, but a careful exploration of model space would still
be warranted. In conclusion, it is not one model that you want,
but many.
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