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Why:
It is a hazard to drilling and infrastructure 
It is viewed by some as a potential energy source 
Methane release may play a role in climate change 
Is a significant part of the global carbon cycle 
Hydrate may play a role in marine CO2 sequestration 
It can confound interpretation of marine EM for exploration 
There is a lot of it 
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indicated the possibility that gas hydrates could exist in

astounding volumes in the natural environment (Fig. 1). By the

mid-1990s, enough field data had been obtained to support

a general consensus that gas hydrate was a significant part of the

natural environment with profound implications for society.21

Recognition of the potentially immense scale of gas hydrate

occurrence has raised many questions. As a practical issue, gas

hydrates can play a role in a range of natural22 and industrial23

geohazards. The previously unappreciated pool of shallow

carbon represented by gas hydrates are only now being incor-

porated into conceptions of global environmental processes,

including carbon cycling24 and global climate.20 Furthermore, for

a planet where energy demands are steadily increasing and future

energy supplies are uncertain, the immense energy supply

potential of tens of thousands of trillions of cubic feet of methane

gas commands investigation. This paper will focus primarily on

these latter two issues, gas hydrates as a potential energy supply

and as a potential source of carbon input to the atmosphere, as it

is these issues that relate most directly to total resource volumes.

Until very recently, all published estimates of gas hydrate

resources, and by extension, judgments on gas hydrate energy

resource potential and role in climate processes, have relied on

estimates of total global volumes of methane housed in gas

hydrate.16 Such estimates are a necessary and important initial

step in understanding gas hydrate occurrence and its implica-

tions; however, as revealed by a series of recent field programs

(Fig. 2) gas hydrate in nature occurs in a wide range of condi-

tions. Gas hydrate is known to occur from the seafloor to depths

of more than 3000 m (10 000 feet) below sea-level, within and

below permafrost, at temperatures ranging from sub-zero to

more than 20 !C; at concentrations from 1–2% to more than 90%

of pore space; as disseminated grains and in massive sediment-

displacing forms.41 The profound differences in the nature of

these occurrences have significant implications for both the

potential producibility of gas hydrates and how gas hydrates may

respond to any given change in the natural environment.

Therefore, it is no longer necessary or appropriate to suggest that

the entire global gas hydrate resource volume has direct rele-

vance to either the energy supply or climate issues.

This report begins by reviewing the terminology used to

describe resources. We then briefly review the history and status

of gas hydrate assessment with respect to each resource category,

and close with some observations on the relevance of various

categories of gas hydrate resource volumes to the energy and

climate issues related to naturally occurring gas hydrate.

Global gas hydrate ‘‘resources’’

Descriptions of the size of the gas hydrate ‘‘resource’’ base are

common. However, these numbers can be easily misunderstood

if the precise intended meaning of the term ‘‘resource’’ is unclear.

In general usage, the term is applied to concepts that can range

from the very broad (every molecule that exists) to the very

narrow (what we could expect to be able to use), even to workers

within a common discipline. Therefore, discussion of gas hydrate

resources, like any hydrocarbon, is best conducted with careful

reference to one of the following ‘‘resource’’ subcategories

(Fig. 3).†

Gas-in-place (GIP) resources

Gas-in-place (GIP) is a term most commonly used to describe an

assessment that includes every methane molecule present in the

subject region or geologic formation without regard for resource

concentration, form, enclosing media, or potential recover-

ability. In traditional oil and gas industry usage, GIP refers to the

total hydrocarbon volume present within a given reservoir unit.

An estimate which intends to include all GIP within a broad

region, to include all forms and settings, is commonly called the

‘‘resource endowment’’. GIP is typically therefore entirely

a function of geologic condition as is determined using the

following formulation (in which the subscript ‘gh’ indicates gas

hydrate):

GIPgh ¼ area (m2) # thickness (m) # porosity (%) # satu-

rationgh (%) # volumetric conversion factor

The volumetric conversion factor in gas hydrate applications

relates to the cage occupancy of the hydrate lattice, and can vary

from about 160 to 180, with a value of 164 (equating to an 85%

occupation) being typically used. Unlike traditional hydrocar-

bons, this value is largely independent of the depth (and therefore

pressure and temperature) at which the gas hydrate occurs.

Therefore, gas hydrates that occur shallower in comparison to

sea-level than roughly 1200–2000 m ($4000 to 6000 ft: depending

on local conditions) will hold more gas (at standard temperatures

and pressures) than an equivalent reservoir volume of free

Fig. 1 Estimates of global gas-in-place in gas hydrate versus the publi-

cation date of the estimate. The observed trend in the more recent esti-

mates (indicated by letters) indicates that work over the past three

decades has not succeeded in constraining gas hydrate resource volumes,

which continue to range over nearly three orders of magnitude. (1)

Trofimuk et al.;2 (2) Trofimuk et al.;3 (3) Cherskiy and Tsarev;4 (4)

Trofimuk et al.;5 (A) McIver;6 (B) Kvenvolden;7 (C) Kvenvolden and

Claypool;8 (D) MacDonald;9 (E) Gornitz and Fung;10 (F) Harvey and

Huang;11 (G) Ginsburg and Soloviev;12 (H) Holbrook et al.;13 (I) Solo-

viev;14 (J) Milkov et al.;15 (K) Milkov;16 (L) Buffet and Archer;17 (M)

Klauda and Sandler;18 (N) Wood and Jung;19 (O) Archer et al.20 (figure

modified after Milkov21).

† All volume estimates correspond to the volume of gas at standard
temperatures and pressures included within the gas hydrate structure,
and not to the volume of the solid phase gas hydrate itself.

This journal is ª The Royal Society of Chemistry 2011 Energy Environ. Sci., 2011, 4, 1206–1215 | 1207

2010

Boswell and Collett, 2011, and Milkov 2004

A lot, but, global volume is highly uncertain: 



Boswell and Collett, 2011

The hydrate resource pyramid.
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Ken Sleeper
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Laboratory studies of hydrate conductivity 



Du Frane et al., 2011

Apparatus to synthesize methane hydrate in a conductivity cell.
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Synthesis of Methane Hydrate: 



100 vol% CH4 
hydrate

100 vol% CH4 
Hydrate

50 vol% CH4 
hydrate:

50 vol% Sand
50 vol% ice:
50 vol% sand

50 vol% CH4 
hydrate:

50 vol% glass 
beads

10 vol% ice:
90 vol% sand

Cryo-SEM is used to assess grain characteristics and phase distribution.

Du Frane et al., 2015



Impedance spectroscopy and equivalent circuit models allow removal of 
electrode effects:

Du Frane et al., 2011



0 vol% sediment

Du Frane et al., 2011

� = �
o

e�A/kT

Pure hydrate conductivity is 3-4 times lower than ice and well fit by Arrhenius 
model.



Mixed with silica sand, hydrate conductivity goes up until a percolation 
threshold is reached.  We think that impurities from the sand, probably K+ 
and Cl-, increase the charge carriers available in the hydrate. 
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Mixed with silica sand, hydrate conductivity goes up until a percolation 
threshold is reached.  We think that impurities from the sand, probably K+ 
and Cl-, increase the charge carriers available in the hydrate. 
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Marine CSEM Methods 
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Controlled-source electromagnetic (CSEM) sounding: 

Field amplitude and phase is measured as a function of frequency and 
source/receiver position. 



With frequency domain CSEM, the entire air-sea-seafloor system is illuminated 
continuously.  Energy propagates preferentially in resistive rocks. 
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With frequency domain CSEM, the entire air-sea-seafloor system is illuminated 
continuously.  Energy propagates preferentially in resistive rocks. 

Amplitude and phase of the magnetic/electric fields on the seafloor can 
be used to infer geological structure to depths of several km.
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Instrumentation:



Myer et al., Geophysics, 2015

Naif, PhD thesis, 2015

The many uses of marine CSEM:

MacGregor et al., GJI, 2001

Subduction zones

Mid-ocean ridges

Oil and gas exploration



Hydrate Ridge Experiment
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The Hydrate Ridge project was a success, but ... 

There are a number of limitations with deployed seafloor receivers: 

• Closely spaced receivers are costly in ship time and instruments 

• Navigation errors increase with short source-receiver offsets 

• There are still, inevitably, gaps in data coverage

This argues for a towed system.  



The Vulcans



Bottom-dragged systems exist but 

• Source-receiver offsets are limited 

• Noise is high 

• Equipment losses are frequent 

• Only inline data are possible

Schwalenberg, et al., 2010

www.whoi.edu/cms/files/revans/2006/2/
EM_System_7927.pdf

http://www.whoi.edu/cms/files/revans/2006/2/EM_System_7927.pdf
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Our modeling also showed that it would be worth recording the vertical 
component of the electric field.

At lower frequencies, 
vertical field data 
can carry more 
information than 
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In 2007, we developed “Vulcan” for fixed offset frequency sounding.
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MC 118, Gulf of Mexico using seafloor instruments and towed receiver:
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out-cropping hydrate

active, in 
proximity to 
super-saline 

waters
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Transponder for navigation
Transponder for navigation “Vulcan” towed 3-axis receivers

Seafloor EM receiver

SUESI - EM transmitter

Under Fugro funding in 2011 we 
developed Vulcan Mk II

•Real-time depth telemetry 

•Real-time data samples 

•3-axis accelerometer 

•1000+ meter offsets 

•Timing pulse from transmitter



seafloor instrument

seafloor instrument
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Voltage noise is comparable to our seafloor instrument.  (But, dipoles 
are 5-10 times shorter.)



2015 Southern California Tests 
A tale of two seeps 

Work carried out by Peter Kannberg and supported by  
OFG and BOEM



Los
Angeles

Scripps

Del Mar
seepSant Cruz

Basin

We have carried out two surveys, one targeting a known methane vent 
called the Del Mar seep, and one covering most of the Santa Cruz Basin.
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The Del Mar seep is a methane 
vent in the San Diego Trough, 
studied  by Scripps students.  It is in 
a pop-up structure bounded by 
two strands of the San Diego 
Trough Fault.

California Borderlands

Maloney et al., 2015



Ryan, et al., BSSA, 2012

Ryan et al. discovered this feature, in about 1,000 m water depth, and 
predicted fluid or methane venting, since confirmed by ROV dives and 
acoustics.

Maloney et al., 2015



Ryan, et al., BSSA, 2012

We also obtained an uncalibrated signal on a Contros methane 
sensor during an earlier CSEM test.



In March 2015 we towed across the vent with a 500 m Vulcan 
array, made a turn, and towed over it again.

Line 1

Line 2

Fault
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Navigation and 
stability of the 
receiver system is 
important.
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~ Base of hydrate stability field

RMS 0.99

Line 1 inversion shows a uniform seafloor except in the seep area.



Frequencies of 1.5, 3.5, 6.5 Hz were fit for 3 Vulcans.  Ey fits to 1% amplitude 
and 0.6°phase.  As predicted, there is a strong low-frequency signal in Ez.

Distance along tow (km)



Inline data; RMS 0.99

Inline + vertical data; RMS 1.6

~ Base of hydrate stability field

~ Base of hydrate stability field

Addition of the vertical electric field data removes what appears to be 
a layering artifact and brings out a conductor that may be fluids 
feeding the vent.



Anisotropy (ratio of vertical to horizontal resistivities) is very high in the 
northern part of the region inferred to be gas hydrate.  



Using Archie’s Law, resistivity can be converted to hydrate 
saturation.   Integrating saturation provides an estimate of 2 billion 
cubic meters of methane, or 0.07 tcf.

Sh = 1�
✓

aRw

�mRt

◆ 1
n

where a=1, n=2, m=3,    =0.5 
Rw = 0.3Ωm, Rt = model resistivity

after Collet and Ladd, 2000

�



Santa Cruz Basin study: 21 seafloor 
receivers and 6 Vulcan tow lines.  
Water depths are over 2,000 m.



Highest resistivities appear to be 
on the flanks of the basin.



It looks as though we have 
discovered another seep.



~8 Ωm resistor lies 
entirely above the BSR, 
while a resistor to the 
east lies under (gas?)

Line 4 seep.



BSR Polarity reversal?Hydrate potential 
	 - 10 degree dipping beds 	  	
	    crossing the BSR 
	 - seismic polarity reversal 
	



March 2013



Over 1,000 line-km of Vulcan survey have been carried out off Japan as 
part of a national assessment of gas hydrate resources.



Research Consortium for Methane Hydrate Resources, Japan, 2015

Inversion of the CSEM data will provide a better estimate of resource 
potential than is possible with seismic/acoustic data alone. 
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