
Mapping with Occam

The Occam inversion method is specifically designed for nonlinear inversion of geophysical data. In the original paper
the method was introduced using 1D resistivity and 1D magnetotelluric (MT) data and models; was quickly extended
to 2DMT models; and has been applied to many other problems since. While the original Occam paper was the
first example I am aware of that used Tikhonov regularization for nonlinear geophysical inversion, the basic idea of
regularized inversion was not new. The essence of the Occam method is not so much the use of regularization, but
the assignment of a target misfit χ2

∗ and then the use of a line search over the Lagrange multiplier µ at each iteration
in order to achieve the target misfit χ2

∗. Other methods simply set µ and then minimize the resulting combination of
misfit and model penalty.

Going back to the original paper, we introduced the methodology using a linear forward problem, which can always
be cast as

d̂ = Gm

where d̂ are the predicted data values, G a matrix of weights describing the linear forward problem, and m is a vector of
model parameters. Note that although m is always a column vector, it can represent a 2D surface by taking sequential
columns from a 2D matrix and stacking them together (and similarly 3D volumes, or even 4D problems). We then
showed that given an appropriate choice of µ, the regularized model is given by

m =
[
µRTR + (WG)TWG

]−1(WG)TWd

where R is a matrix generating some penalty on the model, usually a roughness measure obtained by taking first
differences of adjacent parameters, and W is a diagonal matrix of reciprocal data errors. d of course are the real data.

As we know, µ trades off roughness against data misfit. One expects that for linear problems, misfit can be driven to
zero as long as there are more model parameters than data. However, if there are multiple, inconsistent, data at a given
location, or at least close enough that they are influenced by a single model parameter, then this may not be the case.
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In practice, no matter how rough you make the model (small µ)
there will be some minimum misfit associated with incompatible
data. Making the model smooth increases misfit, but only so much:
a maximally smooth model (all parameters equal) cannot be made
smoother by increasing µ and the misfit saturates to a large value.
The plot to the left is a typical misfit versus Lagrange multiplier
tradeoff for the problems we discuss below. The red point is the
chosen value to achieve an RMS misfit of 1.50. Here the smallest
misfit possible is RMS 0.63.

The mapping problem is simply a linear forward problem where the forward model is just the values of the data
themselves. But, this presents some challenges if the data are not uniformly distributed, or have multiple values at a
given location. Also, most of the existing mapping schemes weight the data equally.

Occam presents a useful solution to this problem. With a first derivative roughness, the map will go flat where there
are no data constraints. The W matrix can have unique values for each data point, and one can use the data errors and
misfit value to choose just how smooth the map should be. The model should not depend on the level of discretization
(although the computer time does – something like the 5th power of the number of model parameters along one axis!),
and we can build a model on a uniform grid that will work with plotting programs after the fact.

Let’s do it...
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First we need to set up a model of a map, by taking a 2D array of points on a plane. In OccamMap.m we provide
minimum x, maximum x, and number of nodes nx (similarly for y).

The way OccamMap.m works, we find the position of (x, y) for each data point in map coordinates (i.e. the fractional
indices of the mesh nodes (1 : nx) and (1 : ny) where nx and ny are the number of model parameters on each axis).
The lower left corner of the box, J1, is simply the integer value of this number (floor()) and the fractional part is
the distance into the box in the two directions (xf , yf ) from J1.

Note that inside Occam, the model is not a matrix but a vector, taken columnwise (i.e. along the y directions) across
x. Physically, we interpret y as positive up, but in the matrix it increases down the columns.

For mapping Occam, we can then find the distances wi to the corners Ji:

w1 =
√
x2
f + y2

f

w2 =
√

(1− xf )2 + y2
f

w3 =
√
x2
f + (1− yf )2

w4 =
√

(1− xf )2 + (1− yf )2

One prediction for the value at (x, y) is a weighted average of the values at Ji, the weights being proportional to how
close the values are to the nodes. In the code I use

√
2−wi, because the maximum value wi can be is

√
2. I normalize

the
√

2− wi weights for each data point by the sum s of the weights, which can vary from 2.4 to 3.4, so that they add
to one.

The G(j, i) matrix entries for the row representing dj are then (
√

2 − wi)/s at the model column matrix entries
representing Ji.

The following plots show fits to electric field magnitudes for RMS 1, 5 and 10, along with the data fits for the RMS 5
model. I used the data errors from the stacking process (also shown), which are largely a measure of how much the
electric field is changing over the 30 second averaging window. The errors are less than 5 µ/m, and not large enough to
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capture electrode drift and navigation errors, so I would prefer the misfits greater than RMS 1.0. Remarkably, Occam
is able to fit these data to RMS 0.001, or about a nV/m.
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Electric field magnitude, mV/m, RMS 1 with stacking errors
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Self Potential Modeling using Occam
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Now, for the self potential case we need approximations to −dV/dx and −dV/dy. Within the box we have two
approximations to each of these, one from each edge:

−dV
dx
≈ J1 − J2

dx
and − dV

dx
≈ J3 − J4

dx

and
−dV
dy
≈ J1 − J3

dy
and − dV

dy
≈ J2 − J4

dy

We can average these, but better yet weight the averages by how close the data point is to the edges of the box from
which we are approximating the gradients:

−dV
dx
≈ (1− yf )

J1 − J2

dx
and − dV

dx
≈ yf

J3 − J4

dx

and
−dV
dy
≈ (1− xf )

J1 − J3

dy
and − dV

dy
≈ xf

J2 − J4

dy

Summing the weighted terms:

−dV
dx
≈ (1− yf )

dx
J1 −

(1− yf )
dx

J2 +
yf
dx
J3 −

yf
dx
J4

and
−dV
dy
≈ (1− xf )

dy
J1 +

xf
dy
J2 −

(1− xf )
dy

J3 −
xf
dy
J4

The data estimates for −dV/dx and −dV/dy are the x and y components of the measured electric fields, turned into
one data vector by adding the y component after the x component. The coefficients for the jth data point are just the
coefficients above for the Ji at the appropriate model entries, first for x and then for y.

The following plots show the self potential computed in this way for RMS 5 and RMS 10. They are encouragingly
similar, except for a difference in peak amplitude. The minimum RMS in this case is about 4.0. If you try to extract
the electric fields from the slope of these models, you get the right sort of numbers, but this is a very noisy process.
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