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1 INTRODUCTION9

Some geophysicists are lucky, and maps or images of their data carry meaningful information10

that is directly interpretable in terms of geological structure. Examples include maps of the11

gravity or magnetic field and seismic or radar reflection profiles. Those of us who work with12

electromagnetic methods are not so lucky, and from the beginning have had to use some sort13

of inverse method to extract models of electrical resistivity from otherwise obscure data (e.g.14

Parker (1970); Inman et al. (1973)). Of course, other geophysicists use inverse methods also,15

particularly those who seek the seismic velocity structure of the mantle, but as Sven Treitel16

(personal communication) pointed out, the electromagnetic community has made significant17

contributions to inverse methods because it needs them more than most.18

Model space is infinite – even for a one dimensional resistivity function of depth – yet data19

are both finite and noisy. This means that the problem is under-determined and ill-posed, and20
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also non-unique; if one solution fits the data then an infinite number will. Early approaches to21

tackling these problems were to reduce the size of model space by inverting for the resistivities22

and thicknesses of a small number of layers (Inman et al. 1973) or by solving for averages23

over some kind of resolving kernel (Parker 1970). Layered inversions have the problem that the24

solution depends on the number of layers chosen a priori, and including too many layers made25

the inverse problem unstable. Resolving kernels also had to be chosen a priori. For nonlinear26

problems the linearized iterative inversion scheme had to be started fairly close to a solution in27

both cases.28

The introduction of a smoothing regularization algorithm called Occam’s inversion (Consta-29

ble et al. 1987) solved all of these problems. An Occam model can be made from any number of30

layers and the smoothing regularization keeps the inversion stable and independent of the layer31

number. A problem with an infinite number of solutions was collapsed to a single unique solu-32

tion – the smoothest model (as defined by the particular regularization chosen) that fits the data33

adequately. The inversion is stable enough that starting from a featureless half-space is possible34

and indeed desirable. Although introduced for one dimensional (1D) problems it was readily35

scaled up to 2D (DeGroot-Hedlin & Constable 1990) and 3D (Siripunvaraporn & Sarakorn36

2011) geometries. The Occam approach has become ubiquitous in geophysical inversion, but it37

has its problems.38

The first problem is that if Earth resistivity structure is not smooth, then Occam’s inversion39

can produce artifacts in the model and a bias in estimated depth of structure. This is not an40

“academic” problem – sharp resistivity contrasts can occur in the real world, such as edges of41

sedimentary basins, faults, and many other geological structures. If smooth inversions are car-42

ried out for models that have sharp changes in resistivity one observes a Gibbs type phenomenon43

(Gibbs 1899), in which the regularized inversion overshoots the resistivity jump⋆. We illustrate44

this Gibbs phenomenon with a simple synthetic model study in which MT data with various45

error levels are inverted for a jump in resistivity (see Appendix A for details). The resulting46

models are displayed in Figure 1(a), showing that once the error is below 10% an overshoot47

⋆ The Gibbs phenomenon in Occam inversions has been known since the introduction of the algorithm, but to the best of our knowledge never

documented in print.
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Figure 1. Inversion of synthetically generated MT data with various levels of noise added. (a): Starting

model (“truth”, black) is a step increase in resistivity. (b): Starting model is a smooth (sigmoid, black)

increase in resistivity. In both panels, green lines correspond an error level of 0.3%, orange lines corre-

spond to an error level of 1%, blue lines correspond to an error level of 3%, golden lines correspond to

an error level of 10%. The true resistivity of this synthetic numerical experiment is shown in black in

both panels.

develops on both sides of the resistivity jump, but more so on the resistive side (something that48

persists if the layers are swapped to make the top layer resistive). There is the danger that for49

more complicated models the spurious peaks in resistivity could be interpreted as real structure.50

Taking the midpoint of the resistivity change in the regularized models over-estimates the depth51

of the resistivity jump by about a factor of 2. We can verify that smooth inversions recover52

smooth models without such artifacts. In Figure 1(b) the step function is replaced with a sig-53

moid function. No overshoot is observed as the error level is reduced, and all except inversions54

of the most noisy data recover the model faithfully.55

A second problem is that creating a uniquely smoothest model makes it extremal. The re-56

sistivity contrasts are thus the minimum required to fit the data, not the most likely. A bounded57

model can be useful in many circumstances, but sometimes the best estimate of the actual rock58

resistivity is what is wanted, say for a porosity estimate. In Figure 1, it can be seen that in both59

cases the models generated from data with 10% noise underestimate the half-space resistivity60

by up to 40%.61

The third problem is that it is difficult to assign any sort of uncertainty measure to a regu-62

larized model. Even for sparsely parameterized layered models, projecting the data errors back63
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into the model parameters though the inversion matrix is only valid if the model parameters are64

fully independent. Otherwise a singular value decomposition is used to identify independent65

eigen-parameters (Inman et al. 1973), but even these are only based on linearizations around66

the final solution. For a regularized model with many parameters the smoothing function creates67

covariance between all parameters, and additionally the number of parameters can be increased68

without changing the solution, so the uncertainty in any single parameter is a meaningless con-69

cept. The method currently in vogue for uncertainty quantification (UQ) in inverse problems,70

quasi-random Markov chain Monte Carlo (MCMC) searches of model space, must resort to us-71

ing sparsely parameterized models in order to force stability and limit computational cost (see,72

e.g., Malinverno (2002); Blatter et al. (2021) for applications of MCMC in EM geophysics).73

In this paper we present algorithms that provide all the benefits of Occam’s inversion but74

that can (i) recover sharp resistivity contrasts; (ii) generate a UQ; and (iii) give an estimate of the75

most probable models. We first consider a single inversion (no UQ) and enforce a blocky model76

by swapping the smoothing regularization for a Total Variation (TV) regularization (Rudin et al.77

1992). TV regularization has had a great successes in image deblurring and compressed sensing,78

and we incorporate it into a nonlinear Occam-style inversion which we call “blocky Occam”79

(see Section 3). Blocky Occam follows the tried and true recipe of an Occam’s inversion. We80

linearize around the current model and obtain a linear TV-regularized problem. We then adjust81

the regularization strength to minimize misfit of the nonlinear model. These steps are iterated82

until convergence. Key to success here is our use of the split Bregman method (Goldstein &83

Osher 2009) to solve the linearized TV-regularized problem at each iteration (see Section 2.4).84

Split Bregman is one of the fastest methods to solve linear TV-regularized inverse problems,85

but it has not been used within an iterative, nonlinear inversion.86

We equip blocky Occam with a UQ via a modified “randomize-then-optimize” (RTO) ap-87

proach (see Section 2.2). RTO generates a UQ by repeatedly solving perturbed inverse prob-88

lems and RTO has been used for years under various names in various fields. In short, we can89

re-purpose blocky-Occam for UQ, by essentially running blocky-Occam inversions in a parallel90

for-loop on perturbed inverse problems. We call the resulting algorithm RamBO (randomized91

blocky-Occam).92
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The use of blocky-Occam and RamBO is illustrated on two marine EM data sets (Constable93

et al. 1984; Gustafson et al. 2019) and we compare the new inversions and UQ to Occam’s94

inversions and UQs obtained via trans-dimensional MCMC (Malinverno 2002; Blatter et al.95

2019). Code for blocky-Occam and RamBO is available on github and Zenodo (links to the96

code will be included at a later stage).97

2 BACKGROUND98

We provide some background materials to set up the notation, to review Occam’s inversion99

and uncertainty quantification (UQ) via randomization of a cost function. We also briefly re-100

view the split Bregman method for solving linear inverse problems with total variation (TV)101

regularization.102

2.1 Occam’s inversion: finding the smoothest model103

Regularized inversion remains the standard method for solving geophysical inverse problems.104

The basic idea is to define and subsequently optimize a cost function that combines data misfit105

and model regularization (see, e.g., Parker 1994). To set up the notation, we denote the data by106

the nd-dimensional vector d, the unknown model parameters (e.g. resistivities) of a discretized107

model are stored in the nm-dimensional vector m and the forward model that predicts the data108

(usually a sophisticated computer code) is denoted by F(m). Errors associated with the data109

are stored in a nd × nd (diagonal) matrix W (reciprocal error weights). A typical cost function110

can now be written as111

C(m) = ∥W (F(m)− d)∥2 + µ ∥Dm∥2 , (1)

where D is a finite differencing matrix and where two vertical bars denote the ℓ2-norm of a vec-112

tor, i.e., ∥x∥2 =
√∑

i x
2
i . Throughout, we will refer to the first term of the cost function as the113

“data-misfit” and the second term as the “regularization.” The “strength” of the regularization114

is controlled by the scalar µ > 0.115

Occam’s inversion (Constable et al. 1987) is an iterative algorithm that has been used for116

decades for regularized inversion. During the iteration, Occam’s inversion adjusts the regular-117
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ization strength µ and finds the smoothest model that fits the data – the quadratic regularization118

term favors smooth models. The iteration of Occam’s inversion is as follows. At step k, the119

model is mk and we approximate the forward model via Taylor expansion:120

F(mk+1) ≈ F(mk) + Jk(mk+1 −mk), (2)

where Jk = ∂F/∂m is the Jacobian matrix, evaluated at mk. Using the linearization in (1),121

yields a quadratic cost function for mk+1122

C(mk+1) =
∥∥∥W (Jkmk+1 − d̂)

∥∥∥2

+ µ ∥Dmk+1∥2 , (3)

where123

d̂ = d−F(mk) + Jkmk, (4)

is “a kind of data vector” that accounts for errors due to linearization. We can now easily opti-124

mize the quadratic function (least squares) to find mk+1 and we do so for various regularization125

strengths µ. Once a regularization µ is selected, the process repeats until the iteration converged126

or reached a desired root mean squared error (RMS)127

RMS =
1
√
nd

∥W (d−F(m))∥ . (5)

A good choice for a target RMS is one or slightly larger. During the iterations, we either chose128

µ to minimize RMS (of the nonlinear model) or, if RMS is below the target RMS, we use129

the largest µ that results in the target RMS. Some implementations of Occam’s inversion, e.g.,130

MARE2DEM (Key 2016), include a “fast Occam” option which dispenses with the line search131

minimization and accepts any µ that decreases misfit at a given iteration.132

2.2 Uncertainty quantification for Occam’s inversion133

The popular approach to uncertainty quantification (UQ) is via Bayes’ theorem, which states134

that135

p(m|d) ∝ p(d|m)p(m), (6)

where p(m|d) is the probability of the model given the data (the posterior probability), p(m) is a136

prior probability of the model (often taken to be Gaussian), and where p(d|m) is the likelihood,137
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connecting the model m to the data d via the forward model F . The symbol ∝ denotes propor-138

tionality, i.e., the quantity to the left differs from the quantity to the right by a multiplicative139

constant. In Bayes’ theorem, the missing constant is the probability of the data, p(d), which is140

called the “evidence.” The evidence is not so relevant for UQ, but it can be useful for model141

selection (Sambridge et al. 2006).142

There are many connections between regularized inversion and Bayesian UQ (see, e.g.,143

Blatter et al. 2022a). For example, we can interpret a classical Occam-style optimization (with144

a cost function as in equation (1)) as the search for the model that maximizes the posterior145

probability146

p(m|y) ∝ exp

(
−1

2

(
∥W (F(m)− d)∥2 + µ ∥Dm∥2

))
. (7)

These connections between a Bayesian posterior distribution and optimization can be exploited147

to yield efficient and scalable, but approximate sampling methods for UQ. Specifically, one can148

sample the posterior distribution by solving perturbed optimization problems149

argmin
m

(
∥W (F(m)− (d+ η))∥2 + µ ∥Dm+ ξ∥2

)
, (8)

where η and ξ are Gaussian random variables that represent perturbations to the data (η) and150

to the regularization (ξ). More specifically, the data perturbations η are mean zero Gaussians151

and their covariance is matrix is (W TW )−1, which is representative of the assumed errors in152

the data. The perturbations ξ are mean zero Gaussian with covariance matrix (1/µ)I , where I153

is the nm × nm identity matrix. Both perturbations (data and regularization) are needed or else154

variances may be underestimated (see Blatter et al. 2022a).155

The above optimization-based sampling process has been invented and re-invented in many156

fields. It is called RTO (randomize-then-optimize, Bardsley et al. (2014); Blatter et al. (2022a))157

in the mathematical community, “ensemble of data assimilation” in numerical weather predic-158

tion (Isaksen et al. 2010), it goes by the name of “randomized maximum likelihood” in the oil159

and gas industry (Oliver et al. 1996; Chen & Oliver 2012), and is referred to as “parametric160

bootstrapping sampling” in hydrology (Kitanidis 1995; Lee & Kitanidis 2013). The process is161

thus well-understood and known to scale to large models and large data sets. We note, however,162
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that RTO is exact only if the forward model is linear, but RTO has proven to be very useful for163

solving nonlinear problems in a large number of very different applications.164

2.3 Blocky models165

The philosophy behind Occam’s inversion is to construct models devoid of features not required166

by the data, achieved by finding the smoothest model (in some sense). However, many, perhaps167

even most, geological features of interest are associated with rapid, not smooth, changes in168

physical properties. Examples include the interface between sedimentary and igneous or vol-169

canic rocks, groundwater tables, edges of magmatic reservoirs, fault structures, and many oth-170

ers. Occam models are useful in such circumstances because the interpreter understands that171

sharp boundaries will be smoothed by the inversion algorithm, but the actual boundary in ques-172

tion is not localized in space, and the physical property contrast (e.g. electrical resistivity) is173

smaller than it is in the true Earth.174

One way forward is to move from quadratic (Thikonov) regularization to ℓ1-norm regu-175

larization, which produces “blocky” (piecewise constant) models. Indeed, smooth and blocky176

inversions have competed with each other for decades (see, e.g., Portniaguine & Zhdanov 1999;177

Farquharson & Oldenburg 1998), and variations of the idea have been pondered over for many178

years, (see, e.g., Farquharson & Oldenburg 1998; Portniaguine & Zhdanov 1999; Guitton &179

Symes 2003; Theune et al. 2010; Lee & Kitanidis 2013; Sun & Li 2014; Wang et al. 2017;180

Fournier & Oldenburg 2019; Tang et al. 2021; Wei & Sun 2021). But the methods have never181

really found their way to mainstream applications. We suspect that the reasons include that some182

methods are computationally expensive, while others are awkwardly described or unnecessarily183

complicated. Moreover, some methods do not address the required search over the “nuisance”184

parameter µ and a UQ has rarely (if ever) been attempted. We address these issues and port ℓ1185

regularization ideas to the well-known, robust and efficient framework of Occam’s inversion.186

We then further equip our inversions with an efficient UQ, implemented via a modified RTO187

approach.188
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2.4 Split Bregman189

Before describing our nonlinear inversion algorithms, we take a short detour and discuss the190

solution of linear inverse problems with total variation (TV) regularization via split Bregman191

(Goldstein & Osher 2009). Specifically, we wish to minimize192

C(x) = ∥Jm− d∥2 + µ |Dm| , (9)

where m and d are vectors of size mn and md, J is a nd × nm matrix, D is a finite difference193

matrix and µ > 0 is a (given) scalar; here | · | denotes the ℓ1-norm, i.e., for a nx-dimensional194

vector195

|x| =
nx∑
i=1

|xi|. (10)

The regularization |Dm|, i.e., the ℓ1 norm applied to the derivative of the unknown m is often196

called total variation (TV) regularization (Rudin et al. 1992).197

The split Bregman method, applied to this problem, introduces the auxiliary variable u =198

Dm and the Bregman variable b to reformulate the cost function as199

CBreg(m,u) = ∥Jm− d∥2 + µ|u|+ γ∥u−Dm− b∥2 (11)

where γ is a second Lagrange multiplier. The above cost function is optimized by iterating the200

following three steps.201

(i) For a given uk and bk, minimize CBreg over m by solving the least squares problem202

mk+1 = argmin
m

(
∥Jm− d∥2 + γ∥uk −Dm− bk∥2

)
(12)

(ii) Given bk and mk+1, minimize CBreg over u by solving the optimization problem203

uk+1 = argmin
u

(
µ|u|+ γ∥u−Dmk+1 − bk∥2

)
. (13)

The solution is a soft-thresholding so that204

uk+1 = ST(Dmk+1 + bk; 2µ/γ), (14)

where205

ST(x;α) = sign(x)max (|x| − α, 0) (15)

is the soft-thresholding function (applied element-wise to the vector in (14)).206
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(iii) The third step updates the Bregman variable207

bk+1 = bk + (Dmk+1 − uk+1). (16)

The above three steps are iterated until we reach convergence (which can sometimes be guar-208

anteed). Note that all three steps are easy to implement and scalable: step (i) is a least squares209

solve; step (ii) is a simple soft-thresholding; and step (iii) is a simple updating (vector addition210

and matrix-vector multiplication). Indeed, split Bregman is arguably the fastest and most robust211

(Goldstein & Osher 2009) method for minimizing the TV regularized cost function (9) and, has212

been very successfully applied to various large scale linear inverse problems.213

In the numerical illustrations in Section 5 we set γ = 2µ (as recommended) and use a simple214

convergence criteria and stop the iteration if215

∥mk+1 −mk∥
∥mk∥

≤ tolSB, (17)

where we set the tolerance tolSB = 10−4, or if a maximum number of iterations is reached. We216

set the maximum number of iterations to 300.217

3 BLOCKY OCCAM218

We now describe “a kind of” Occam’s inversion which we call blocky Occam. Blocky Occam219

discovers the blockiest model that fits the data with the fewest changes in resistivity. To find220

blocky models, we swap the quadratic regularization in (1) with a total-variation (TV) regular-221

ization (Rudin et al. 1992)222

C(m) = ∥W (F(m)− d)∥2 + µ |Dm| , (18)

where | · | denotes the ℓ1-norm. The TV regularization (µ |Dm|) enforces sparsity of the deriva-223

tive of the model, because we apply the sparsity promoting ℓ1-norm to the model’s derivative.224

For these reasons, TV regularization promotes piece-wise constant, blocky models as desired.225

We mimic the classical Occam’s inversion and set up an iteration. Linearizing (see equa-226

tion (2)) around the current iterate mk gives227

C(mk+1) =
∥∥∥W (Jkmk+1 − d̂)

∥∥∥2

+ µ |Dmk+1| , (19)
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Algorithm 1 Blocky Occam
while k ≤ kmax do

Compute the Jacobian Jk and the modified data vector d̂ = d−F(mk) + Jkmk

for µ ∈ [µmin, µmax] do

Apply split Bregman to solve the optimization problem

argmin
mk+1

∥∥∥W (Jkmk+1 − d̂)
∥∥∥2

+ µ |Dmk+1| ,

Compute RMS of the optimizer using the nonlinear model F(·)

end for

if RMS ≤ RMStarget then

Pick largest µ that leads to RMS below target

else

Pick µ to minimize RMS

end if

mk ← mk+1

end while

where, as in Occam’s inversion, Jk is the Jacobian of the forward model and d̂ = d−F(mk) +228

Jkmk (compare the above equation with (3)). In Occam’s inversion, one obtains a least squares229

problem after linearization (which is easy to solve). Linearization in blocky Occam leads to a230

linear TV-regularized inverse problem. This problem can be solved efficiently with split Breg-231

man (see Section 2.4) for a range of regularization parameters µ. Once we chose a µ, we can232

proceed with the iteration. During the iterations, we either chose µ to minimize RMS or, if233

RMS is below the target RMS, we use the largest µ that results in the target RMS (generat-234

ing the blockiest model). One may consider adapting ideas of fast Occam (Key 2016) to the235

TV-regularized problem. We summarize blocky Occam in Algorithm 1.236

Blocky Occam inherits the robustness and numerical efficiency from Occam’s inversion:237

(i) The regularization strength is adjusted automatically during the iteration, which enhances238

robustness of the iteration and almost always results in quick convergence (rarely divergence).239

The only tunable parameter in blocky Occam is the desired target RMS and the initial model,240
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which is usually a half space (constant resistivity). The same is true for classical Occam’s in-241

version.242

(ii) Just as in Occam’s inversion, one does not need to worry about the layer thickness or,243

more generally the grid of the forward model. The TV regularization enforces blocky models244

with few resistivity changes independently of the underlying grid.245

(iii) One can create a blocky Occam code with only minor modifications to a classical Occam246

code. The only difference is that we swap the least squares solves after linearization with a split247

Bregman method, which is also easy to implement and scalable (almost like least squares). The248

additional Lagrange multiplier that occurs during split Bregman is adjusted automatically and249

in accordance with the regularization strength µ.250

In Section 5 we demonstrate how to use blocky Occam on the Schlumberger data set (Constable251

et al. 1984) classical data set (also used in Constable et al. (1987), Malinverno (2002), and252

Blatter et al. (2022a)) and a more recent magnetotelluric (MT) data set collected offshore New253

Jersey (Gustafson et al. 2019) (also used in Blatter et al. (2022b)). Implementation and testing254

in 2D models will be done in future work in the context of specific electromagnetic data sets.255

4 RANDOMIZED BLOCKY OCCAM256

It is desirable and increasingly important to not only invert for one model, but to equip the257

inversion with an estimate of associated uncertainties in the model. We use a randomize-then-258

optimize (RTO) approach (Bardsley et al. 2014), originally proposed by Kitanidis (1995) and259

extended to TV regularized problems by Lee & Kitanidis (2013). The RTO approach entails260

solving perturbed optimization problems with perturbed cost functions261

C(m) = ∥W (F(m)− (d+ η))∥2 + µ |Dm+ ν| , (20)

where, as before, η is Gaussian with mean zero and covariance matrix (W TW )−1 and where ν ∼262

L(0, 1/µ) has a Laplace distribution with scale parameter 1/µ. We can optimize the perturbed263

cost functions using the blocky Occam described above, but with fixed regularization strength µ.264

The implementation is easy and only requires that we replace the data d in the cost function (18)265

by the perturbed data (d+η) and that we account for the perturbation ν in split Bregman (which266
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Algorithm 2 Randomized blocky Occam (RamBO)
for k ≤ kmax do

Draw a sample ηk from η ∼ N (0, (W TW )−1) and a sample νk from ν ∼ L(0, 1/µ).

Use blocky Occam with fixed µ to solve the perturbed optimization problem

argmin
m

∥W (F(m)− (d+ ηk))∥2 + µ |Dm+ νk| ,

end for

we describe in the Appendix B). The resulting procedure, which we call “randomized blocky267

Occam” (RamBO), is summarized in Algorithm 2 and essentially amounts to running blocky268

Occam within a (parallel) for-loop. For numerical efficiency, we initialize all optimizations269

during RamBO with the result of a blocky Occam (with adjustable regularization strength µ as270

described in Section 3).271

Note the blocky Occam within RamBO does not automatically adjust the regularization272

strength µ. For that reason, the iteration can be slightly less stable and we introduce a stepsize273

α ∈ (0, 1] so that the model in the next iteration is a linear combination of the model we found274

via split Bregman and the current model, i.e., the “replace” step in Algorithm 1 becomes275

mk ← αmk+1 + (1− α)mk, (21)

where mk+1 is chose along with a regularization strength µ to either minimize RMS, or, if the276

target RMS is reached, along with the largest µ that yields the target RMS (blockiest model).277

The remaining question is: If RamBO does not automatically adjust the regularization278

strength µ, how should µ be determined? One way forward is to adopt a hierarchical approach279

and sample models m and regularization strengths µ jointly from the posterior distribution280

p(m,µ|d). This strategy is, for example, used in the RTO-TKO (Blatter et al. 2022a,b), and281

this technology could be adapted to TV regularized problems. An easier and more efficient way282

forward is to pick a relatively small value for µ, e.g., we pick µ = 0.1 in the numerical illus-283

trations in Section 5. The reason is that by choosing a small µ, we compute the most uncertain284

blocky models (another use of Occam’s principle). The value µ = 0.1 may not be universal285

and we recommend first run a blocky Occam (which one may be tempted to do anyways) and286

monitor the range of regularization strength encountered during blocky Occam.287
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Finally, we note that Wang et al. (2017) explored ℓ1 regularization in the context of RTO via288

a clever invertible change of variables. The TV regularization we need here for blocky models,289

however, make the change of variables not invertible and, hence, not applicable (see also (Lee290

2021)).291

4.1 RamBO and trans-dimensional MCMC292

A common approach to UQ in geosciences is trans-dimensional Markov chain Monte Carlo293

(trans-D MCMC) (see, e.g., Sambridge et al. 2013, 2006; Malinverno 2002). For layered mod-294

els as we discuss them here, we parameterize the subsurface by the number of layers and their295

thicknesses and then use the trans-D MCMC to determine the resistivity in each layer. Criti-296

cally, the number of layers is an unknown, but the trans-dimensional approach induces a natural297

parsimony and favors models with a small number of layers over models with a large number of298

layers. RamBO as presented here follows very similar principles, because the TV regularization299

will enforce that the number of “blocks” is as small as possible. Remember, however, that the300

underlying model parameterization in RamBO has a large number of layers, and if smoothing301

is required by the data the inversion will allow that.302

We expect that RamBO and trans-D MCMC give somewhat similar results when applied to303

invert the same data set. RamBO, however, has a large computational advantage: We only need304

relatively few samples and the samples are easy to compute (see examples below). Perhaps more305

importantly, every inverse problem requires crafting a new and tailored trans-D MCMC code,306

but RamBO is easy to apply, especially if an Occam-style code is already available. On the307

downside, RamBO assumes access to the Jacobian, which is not required by trans-D MCMC.308

The use of the Jacobian, however, implies faster convergence of RamBO and trans-D MCMC309

codes are notoriously slow to converge.310

5 NUMERICAL ILLUSTRATIONS311

We illustrate the use of blocky Occam and RamBO on two data sets. The Schlumberger data set,312

collected at the Wauchope station in central Australia (Constable et al. 1984), was also inverted313

in the Occam’s inversion paper (Constable et al. 1987). A marine magnetotelluric (MT) data set314
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was recently collected off-shore New Jersey (Gustafson et al. 2019) to understand low salinities315

observed on wells in nearby areas. For the marine MT data set we note that the relatively shallow316

waters in the region (20m-100m) were insufficient to attenuate high frequencies (1 − 100 Hz),317

and this allowed to to resolve upper subsurface structures. Following Blatter et al. (2021), we318

consider station N05 and invert for 1D resistivity models.319

We first perform blocky Occam inversions in Section 5.1 and compare the blocky models to320

smooth models obtained via classical Occam’s inversion. In Section 5.2, we compute uncertain-321

ties using RamBO, and we compare our results to the trans-D MCMC inversions of Malinverno322

(2002) and Blatter et al. (2019). In our inversions and UQ, we use the standard deviations re-323

ported as part of the Schlumberger and marine MT data sets to construct the weighting matrix324

W in the cost functions (1) and (18). The model Jacobians are computed via finite-differences,325

but a more careful implementation should use adjoints or automatic differentiation to reduce the326

number of required forward model evaluations – we use finite differences here to keep the code327

clean and because the 1D forward models are computationally inexpensive.328

5.1 Blocky Occam inversions329

We apply blocky Occam to invert the Schlumberger and marine MT data sets and compare the330

results to Occam’s inversions that generate smooth models. All inversions start with a half-space331

model and both inversion algorithms are given a range of regularization strengths and a target332

RMS (which we set to one). The inversion algorithms stop the iteration if the RMS is below the333

target RMS or if RMS does not change much from iteration to the next, i.e., if334

|RMSj+1 − RMSj| ≤ tolRMS. (22)

If (22) is satisfied, we say the the iteration “converged.” For the results shown below, we chose335

the tolerance tolRMS = 10−4.336

For the Schlumberger data set, Occam’s inversion and blocky Occam converge in 3-4 iter-337

ations and lead to a nearly identical RMS of 1.077 (blocky Occam) and 1.080 (Occam’s inver-338

sion) (** in the figure it is 0.99 and 0.98 **). The resistivity models obtained by blocky Occam339

and Occam’s inversion are shown in Figure 2(a) and the fits to the data are shown in the supple-340
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Figure 2. Blocky Occam compared to Occam’s inversion. Shown are the resistivities as a function of

depth for (a) the Schlumberger data set and (b) the marine MT data set. Blocky Occam (pink) and

Occam’s inversion (grey) lead to nearly identical RMS and the blocky Occam solution looks like a

blocky version of the Occam’s inversion as desired and as expected.

mentary Figure A1(a) in Appendix C (because the data fits are obviously very good given the341

small RMS). As expected and as desired, the blocky Occam models looks like blocky versions342

of the smooth models obtained via Occam’s inversion. Occam and blocky Occan models can be343

obtained at roughly the same computational cost and exhibit a very similar fit to the data (see344

Figure A1(a)). More specifically, we find that Occam’s inversion reveals two main features: a345

conductive zone beneath a 2 m dry surface layer and a deeper resistive zone. Because Occam’s346

inversion generates the smoothest model that fits the data, the transition between the conductive347

and resistive zones is blurry and not well-defined. In comparison, blocky Occam provides a348

more distinct separation between the conductive and resistive layers, particularly the base of the349

conductive layer at approximately 200 m depth.350

For the marine MT data set, both inversion algorithms require more iterations: blocky Oc-351

cam requires 13 iterations and Occam’s inversion requires 19 iterations to reach the target RMS.352

Both inversions lead to a nearly identical RMS (0.986 for blocky Occam and 0.987 for Occam’s353
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inversion). The resistivity models are illustrated in Figure 2(b) and the data fits can be found354

in supplementary Figures A1(b)-(c). The smooth model obtained via Occam’s inversion shows355

two distinct peaks that correspond to resistive and conductive features. The resistive zone be-356

tween 40 m to 160 m is associated with sediments hosting low salinity water. The conductive357

feature at about 400 m suggests sediments hosting seawater. The smooth model shows oscilla-358

tions around 300 m, where the transition between low and high resistivity zones occurs. These359

oscillations appear because the smooth inversion is really blocky or in other words, we have360

sharp changes in resistivity, and for that reason, we observe Gibbs-type phenomenon in the361

transitions in smooth models. In contrast, the blocky Occam model defines a simpler boundary362

between the high and low resistivity zones.363

Finally, we note that blocky Occam applies the split Bregman iteration within the linearizing364

“outer loop” of an Occam’s inversion. The overall computational cost of blocky Occam thus de-365

pends on how fast split Bregman converges. Here, convergence of split Bregman is assessed by366

equation (17) and we chose a small tolerance to obtain very blocky models. The split Bregman367

iteration converges faster if we use a larger tolerance, but then the resulting models are not re-368

ally blocky. With our choices, split Bregman converges on average within 181 iterations for the369

Schlumberger data set and within 154 iterations for the marine MT data set. We acknowledge370

that the number of iterations is quite large, which may result in high computational costs in 2D371

or 3D problems for which the linear algebra of solving least squares problems is more involved372

than in our 1D test cases (step (i) of split Bregman, see Section 2.4). Our experiments with 1D373

electromagnetic data thus suggest that the large number of iterations in split Bregman generates374

a computational overhead compared to Occam’s inversion, but this overhead is needed to obtain375

truly blocky models. We are unaware of numerical techniques that are more efficient than split376

Bregman. All other ideas we tried, including approximating ℓ1 norms via Eckblom norms or377

Huber losses, interior point methods for ℓ1 convex optimization (see, e.g., Nocedal & Wright378

2006), or trans-dimensional MCMC, were computationally more expensive, led to smoother379

models, or both. The search for blocky models may always be computationally more expensive380

than searching for smooth models: the TV-regularized inverse problem (18) is inherently more381

difficult to solve than the nonlinear least squares problem in (1).382
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5.2 UQ with RamBO383

We now apply RamBO to the Schlumberger and marine MT data sets to compute an uncertainty384

quantification. RamBO amounts to running blocky Occam, with a fixed regularization strength385

µ = 0.1 in a parallel for-loop. We note that we obtain very similar results with similar µ, but if386

we choose µ to large (e.g., µ = 2), then the uncertainty bounds are very narrow due to the large387

influence of the Laplacian prior. If µ is too small (e.g, µ = 0.01), the optimization is unstable.388

In general, one should adjust µ for blocky Occam to be as small as possible to compute the389

largest possible uncertainty. A range of possible regularization strength values is often apparent390

after inspecting the results of a blocky Occam or Occam’s inversion.391

Since the 1D inversions are inexpensive, and since competing trans-D MCMC codes usually392

require a very large number of forward model evaluations, we draw a large number of samples393

(104). For both data-sets, the optimization of RamBO occasionally “crashes,” and leads to a394

large RMS > 3 or NaNs. We filter out these failed attempts and are then left with 9202 samples395

for the Schlumberger data set and 9639 samples for the marine MT data set. We use these396

samples in Figure 3 to create histograms of resistivity (log-scale) as a function of depth, similar397

to Figure 12 in Malinverno (2002) and Figure 10(b) in Blatter et al. (2019).398

For the Schlumberger data set (Figure 3(a)), we find an uncertain but resistive surface layer399

to a depth of 2 m, followed by three similarly conductive layers (3.5 m–10 m, 10 m–30 m400

and 30 m–100 m). Between 170 m and 4500 m, we detect a resistive layer and beneath this401

the uncertainty becomes large. These results are in good agreement with the trans-D MCMC402

results reported by Malinverno (2002) and, to a lesser extent, also with the results of Blatter403

et al. (2022a), which uses a quadratic regularization. In addition, we note that uncertainty is404

not symmetric about the blocky Occam model (pink line in Figure 3(a)). This is to be expected405

because the blocky Occam model is an extreme model – the blockiest model that fits the data.406

For the marine MT data set, RamBO defines a resistive layer (40 m–200 m) and a conductive407

layer (400 m–500 m). Below 500 m, the uncertainty is rather large, which is in good agreement408

with the trans-D results reported by Blatter et al. (2019). Again, the uncertainty is not symmetric409

around the blocky Occam solution (as expected). The blocky Occam solution rather picks out410

the least resistive model that is rendered likely by RamBO when the data are very informative411
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Figure 3. Uncertainty quantification for the Schlumberger data set (a) and marine MT data set (b). Shown

are histograms of resistivity (log-scale) as a function of depth. Warmer colors (green and yellow) indicate

higher probability and cool colors (blues) indicate low or no probability (dark blue). The brown lines

indicate 5% and 95% quartiles and the pink lines correspond to the blocky Occam results described

above.

(above 400 m), which makes sense since MT is more sensitive to thin conductors than thin412

resistors (Key et al. (2006)).413

The data fits of models generated by RamBO for the Schlumberger and marine MT data414

sets are shown in Figures A2(a,c,d) in Appendix C. Histograms of RMS of models generated415

by RamBO are shown in Figures A2(b.e). RamBO explores many models that fit the data well416

and the distribution of RMS is near one for both data sets. We note “spikes” in the histograms417

near the target RMS, which are caused by the use of the target RMS as a stopping criteria for418

the iteration.419

In summary, RamBO generates a UQ that is comparable to what other methods have pro-420

duced. Compared to trans-D MCMC, however, RamBO has two advantages:421

(i) The UQ can be computed at a reduced computational cost.422

(ii) RamBO relies on optimization and can be implemented with only minor modifications423
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Figure 4. Spaghetti plots of 50 samples obtained by RamBO (purple) for the Schlumberger data set (a)

and the marine MT data set (b). Shown in pink is the blocky Occam model

of an existing Occam’s inversion code. Trans-D MCMC, on the other hand, is usually tailor-424

made for each problem and trans-D MCMC codes are not easily portable from one inversion to425

another.426

The computational advantage of RamBO compared to trans-D MCMC is more apparent427

if we constrain the number of samples. With RamBO, about 50 models may be sufficient to428

get an idea of the uncertainty of the inversion. We illustrate this idea in Figure 4, where we429

show a “spaghetti plot” of 50 samples of RamBO. The 50 samples are sufficient to eyeball430

regions of large or small uncertainty and the 5% and 95% quartiles are already comparable to431

those obtained from O(104) samples. RamBO inherits the computational efficiency for UQ from432

RTO, which was already reported and discussed at length in the context of inverting EM data by433

Blatter et al. (2022a,b). MCMC in general and trans-D MCMC in particular, routinely require434

thousands or millions of samples due to slow convergence (and the convergence becomes slower435

with dimension/the number of layers). RamBO may therefore be viewed as a computationally436

efficient and more robustly applicable alternative to trans-D MCMC.437
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6 SUMMARY AND CONCLUSIONS438

Although blocky models are useful for representing abrupt changes in resistivity they have not439

found their way into the mainstream in EM applications. Methods like trans-D MCMC, Huber,440

and Ekblom norms have explored the blocky ideas over the years, but they are still not widely441

used because they are computationally expensive, unnecessarily complicated, or both.442

In this work, we use TV regularization to force blocky models. We extend Occam’s inversion443

to include TV regularization and use split Bregman for very efficient solutions. We call this444

blocky Occam. Then, we equip this algorithm with an efficient uncertainty quantification (UQ)445

method via a modified RTO approach which we call RamBO. The implementation of blocky446

Occam is remarkably simple once you have an Occam’s code. With just one line change, you can447

incorporate Split Bregman, which is also easy to implement. RamBO is just as simple—once448

you have blocky Occam, you can run it with a parallel for loop.449

Like the classical Occam code, blocky Occam and RamBO require minimum tuning. We450

illustrate the use of blocky Occam using 1D DC resistivity data and a marine MT data set. For451

both data sets, our blocky models display the same structures found using classical Occam’s452

inversion but with sharper transitions and clearer distinctions between resistivity contrasts. A453

UQ generated by RamBO is comparable to one obtained by trans-dimensional methods, but454

RamBO is easier to implement and requires less computational cost.455

As explained in the introduction, we are motivated by the desire to interpret electromagnetic456

data, but inversion algorithms know nothing of the physics in the forward problem, and our457

code has already been adopted by our seismic colleagues. As for the original Occam algorithm,458

we and others expect to apply it to 2D and perhaps 3D problems. However, 1D solutions are459

still useful in some aspects of geophysics. For example, the hugely popular SkyTEM system460

(Sorensen & Auken 2004) uses hundreds of stiched 1D inversions as an interpretation product,461

and might benefit from the combination of better depth resolution and minimal tuning of blocky462

Occam.463
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APPENDIX A: PARAMETERS USED TO CREATE FIGURE 1473

A total of 50 MT amplitudes and phases logarithmically spaced between 100 Hz and 100,000 s474

were computed for a simple one dimensional model of a 300 m thick 1 Ωm layer underlain475

by a 50 Ωm half-space and also a model replacing the step with a sigmoid function centered476

on 500 m depth. The data were perturbed with normally distributed noise and inverted using a477

standard Occam approach. The inverted model consisted of 100 layers increasing exponentially478

in thickness from 1 m to 1,000 km. Regularization was a first difference between each layer,479

unweighted by layer thickness or depth.480

Noise was set to 0.3%, 1%, 3%, and 10% of linear apparent resistivity and propagated481

into log10(apparent resistivity) and linear phase, which were the inverted data. For each noise482

level 20 inversions were carried out to capture variations associated with the noise statistics, all483

converging to a root-mean-square misfit of 1.0.484

APPENDIX B: SPLIT BREGMAN WITH OR WITHOUT PERTURBATIONS485

We wish to minimize the cost function486

C(x) = ∥Jm− d∥2 + µ |Dm+ ν| , (B.1)



23

with split Bregman. The auxiliary and Bregman variables are as before and the optimization487

problem becomes:488

CBreg(m,u) = ∥Jm− d∥2 + µ|u+ ν|+ γ∥u−Dm− b∥2. (B.2)

The reformulated optimization problem is solved by iterating the following three steps.489

(i) For a given uk and bk, minimize CBreg over m by solving the least squares problem490

mk+1 = argmin
m

∥Jm− d∥2 + γ∥uk −Dm− bk∥2 (B.3)

(ii) Given bk and mk+1, minimize CBreg over u by solving the optimization problem491

uk+1 = argmin
u

µ|u+ ν|+ γ∥u−Dmk+1 − bk∥2. (B.4)

via soft-thresholding:492

uk+1 = ST(ν +Dmk+1 + bk; 2µ/γ), (B.5)

(iii) Update the Bregman variable493

bk+1 = bk + (Dmk+1 − uk+1). (B.6)

We summarize split Bregman with perturbations ν in Algorithm 3, where we set the Lagrange494

multiplyer γ = 2µ, as recommended by Goldstein & Osher (2009). The algorithm for split495

Bregman without perturbations, as used in the blocky Occam of Section 3, can be obtained by496

setting ν = 0.497

APPENDIX C: ADDITIONAL FIGURES498
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Algorithm 3 Split Bregman
while k ≤ kmax do

Solve the least squares problem

mk+1 = argmin
m

∥Jmk − d∥2 + γ∥uk −Dmk − bk∥2

Use soft-thresholding to find uk+1

uk+1 = ST(ν +Dmk+1 + bk; 1),

Update the Bregman variable

bk+1 = bk + (Dmk+1 − uk+1).

if convergence then

Exit

else

mk ← mk+1

uk ← uk+1

bk ← bk+1

end if

end while
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Figure A1. Blocky Occam compared to Occam’s inversion. Panel (a) shows apparent resistivity

(logspace) as a function of electrode spacing (AB/2) for the Schlumberger data set, along with error

bars and the data fits of blocky Occam (pink) and Occam’s inversion (grey, partially hidden). Panels (b)

and (c) show apparent resistivity (logspace) and phase as a function of period, along with error bars. The

data fits for blocky Occam and Occam’s inversion are shown in pink and grey. The result of Occam’s

inversion is partially hidden by the result of blocky Occam.
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Figure A2. (a) Data fits of 500 models generated by RamBO for the Schlumberger data set. (b) His-

togram of RMS corresponding to the models generated by RamBO (Schlumberger). (c,d) Data fits of

500 models generated by RamBO for the marine MT data set. (e) Histogram of RMS corresponding to

the models generated by RamBO (marine MT).
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