
Gravity

1. Introduction

The gravity method is used in exploration geophysics and geology to map lateral variations in rock
density. Neglecting isostasy, on a geological scale the biggest signals come from the different densities of
sedimentary and igneous (basement) rocks. For minerals exploration, metal oxide and sulphide minerals
are very much more dense than the host rocks, making gravity “anomalies” a key component of drilling
decisions. For petroleum exploration, stratigraphic highs and lows and salt bodies produce gravity signals
that can be factored into geological models for drilling decisions. At the smallest scales, highly precise
gravity surveys can be used to delineate tunnels, tombs, and other man-made cavities within otherwise solid
rock.

The biggest gravity signal, of course, comes from Earth’s main gravity field. This means that the variations
related to near-surface geological structure have to be measured in a background field that is tens of millions
of times larger. Although fairly good ship-borne measurements can be made with automated equipment,
and some air-borne gravity is being collected, the great majority of gravity data are collected site by site
by people using delicate equipment requiring some specialized knowledge. Another important aspect of
gravity surveying is that height needs to be measured to centimeter accuracy for the data to be correctly
interpreted, adding another demanding aspect to the method. Nevertheless, most continents have been
covered by gravity surveys and it remains one of the basic geophysical tools.

2. Basics: Force and Potential

The Earth’s gravitation field is a result of the Earth’s internal mass distribution, and so some knowledge of
the internal mass may be obtained from surface measurements of the gravity field. This knowledge may be
used for mapping regional structure, locating ore bodies, estimating ore reserves, mapping structural traps
for petroleum.
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Figure 1: Attraction of point mass m1 on point mass m2 located at point P .

We know from Newton’s law that masses attract each other, and that the gravitational force of attraction
on a point mass m2 due to a point mass m1 a distance R away is

F = −Gm1m2
R2 r

where G is the gravitational constant, 6.67430 ± 0.00015 × 10−11 m3 kg−1s−2 (by 2018 international
agreement) and r is the unit direction vector from m1 towards m2. If the force on a body at the Earth’s
surface is required, m1 = me = 5.976× 1024 kg and R = 6.37816× 106 m (at the equator). Thus the force
on a 1 kg mass is 9.7983 kg m s−2 (or Newtons). (We have used a result which we shall prove later that
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says that a spherical mass distribution produces the same gravitational force as a point mass of the same
size). The gravitational force per unit mass at P (also called the gravitational field), which from F = ma
we know to have the units of acceleration, is

g = −Gm1
R2 r .

Thus at the surface of the Earth gravitational acceleration is 9.8 m s−2. In cgs units, this is 980 cm s−2, or
980 gal. In exploration, the customary unit is the milligal (1 mgal = 10−3 gal). As a result, we have that 1
mgal = 10−5 m/s2. The milligal is slowly being replaced by a more SI-friendly unit, the gravity unit), where
1GU = 10−6 m/s2. A difference of 10 is hard to notice sometimes, so one always needs to check what units
are being used.

The first experiment to measure gravitational force in the laboratory was that of Henry Cavendish in 1798,
known universally as the Cavendish Experiment. The objective was to measure average Earth density,
which Cavendish obtained as 5448 kg/m3, and he didn’t actually compute G. This was done over 70 years
later, using Cavendish’s results, and was G = 6.74± .047× 10−11 m3 kg−1 s−2, accurate to 1% (his error
estimate was 0.6%).

Figure 1b: The Cavendish experiment.

Gravitational potential at a point, P , is defined as the work required to move a unit mass from an infinite
distance to the point P . Work is force times distance, so we can compute the potential by integrating the
force per unit mass from infinity to P :

UP =

P∫
∞

g.d r = Gm1

P∫
∞

1
r2dr = −Gm1

R
.

Gravitational potential is always negative because you gain work as you move masses closer to each other.
Note that the gravitational force is a vector (i.e. it has a magnitude and a direction) but that potential is a
scalar (i.e. it has magnitude only). Both are functions of three dimensional space. Dealing with potential
is often easier than dealing with the field directly. The gravitational field is obtainable from the potential by
differentiation:

gP = −∇UP .
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Figure 2: Potential at point P due to the volume element dm is integrated over the volume V to find the
effect of the mass on the potential field. We have taken the special case where P is at the origin in order to
simplify the mathematics.

The potential is conservative, that is, it doesn’t matter what path the mass takes to go from point to point,
the total work done is the same. Potential fields are also additive, or linear, so the effect of a large mass may
be obtained by integrating the effect of all the constituent infinitesimal elements:

To find the potential at P due to the mass in volume V , we integrate the effects of the elements dm:

UP =
∫
V

dU = −
∫
V

G

|R|
dm

which in Cartesian coordinates is

UP = −
∫ ∫

V

∫
Gρ

R
dxdydz .

We are no longer considering point masses, so we have introduced density to relate volume to mass: mass
= volume × density. The SI units of density are kg.m−3, but the cgs units of g.cm−3 are very commonly
used. Density is usually expressed using ρ as here, but σ is sometimes used. (This is confusing, because
σ is better reserved for mass per unit area, or surface density.) If density does not vary with position in the
body, it may be taken outside the integration:

UP = −Gρ
∫ ∫ ∫

dxdydz

R
.

The gravitational field may be obtained from the potential by differentiation, as before. We shall see that it
is the vertical (z) component of gravity which is of most interest in exploration, so

gz = −∂U
∂z

= Gρ
∫
V

z

R3 dxdydz

(we have used R =
√
x2 + y2 + z2 here).

3. Rock Densities

Mass is simply density times volume (m = ρV ), so for a fixed volume Earth it is variations in density that
determine the gravitational field outside the earth.
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Densities of rock-forming minerals:
Mineral Density, kg/m3

Water 1000
Quartz 2650
Orthoclase 2550
Albite 2620
Anorthite 2760
Olivine 3330
Enstatite 3120
Diopside 3280

Densities of oxide minerals:
Magnetite 5000
Chromite 4360
Cuprite 6000

Densities of sulfide minerals:
Galena 7500
Pyrite 5000
Sphalerite 3750

Igneous rocks

Limestone

Shale

Sandstone

Soil and alluvium

Salt

1.6 1.8  2.0 2.2 2.4 2.6 2.8 3.0

Density, 1000kg/m   or g/cm3 3
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Figure 3: Ranges in density for various rock types (from Grant and West).

Figure 3, from Grant & West, gives a rough idea of the densities of various classes of rock. Note the scatter
in the values for similar rock type; estimates from tables such as these will be of limited use for the analysis
of specific gravity field data. They give us the approximate relationship

ρ soil < ρ sedimentary rocks < ρ igneous rocks

but there is some overlap between these catagories. The factors which affect rock density are:

a) Porosity and saturation:

ρ dry porous rocks < ρ wet porous rocks < ρ non-porous rocks
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If the fractional porosity is φ then the density of a saturated rock is

ρwet rock = ρgrains(1− φ) + ρwater.φ

and a dry rock is
ρdry rock = ρgrains(1− φ)

because the density of air can be taken as zero (it is actually a little over a kg per cubic meter). If the rock
is partially saturated, by a fraction S, then

ρS = ρgrains(1− φ) + ρwater.S.φ

b) Age: As a rock gets older, it gets more dense because compaction, cementation and secondary mineral
growth in pores reduces porosity.

c) Depth of burial: As depth increases, overburden pressure increases and so compaction increases. It
appears that compaction is most important for clays and not important for sands, which mainly lose porosity
by cementation. This is seen in Figure 4, illustrating porosity versus depth. Remember that deeper rocks
tend to be older, so two factors are being illustrated.

Figure 4: Relationship between porosity and depth of burial in sedimentary basins that have not undergone
metamorphism. The rapid loss of porosity in clay is due largely to compaction. The gradual loss of porosity
in sands is largely due to cementation. The spreads of data are principally due to variations in thermal and
pressure gradients and to mineralogical differences (From Selly, 1976: An Introduction to Sedimentology,
Acad. Press) .

d) The SiO2 content of igneous rocks: the greater the content of these lighter elements the lower the density.

e) Metamorphism: Increases ρ because of loss of porosity and growth of high pressure (denser) mineral
phases.
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f) Metal content: Metal oxides and sulphides are very dense.

Methods for estimating the density of rocks are:

a) Laboratory studies. Water saturation must be matched to that in situ. One cannot estimate the effect
of large cracks, fissures, faults in the laboratory. One must be careful not to use weathered specimens.
However, if a core is available and the densities of a number of samples are averaged, a good result is
possible.

b) Borehole density logging, see page 794 of Telford et al. A gamma ray source is pressed against the
wall of a borehole and the number of rays which are scattered into a detector are counted. The gamma
rays energetic enough that they may be thought of as particles and ‘bounce’ off electrons in a billiard ball
fashion, transferring momentum. The number of electrons is related to density.

c) Sesimic velocity and the Nafe-Drake relationship (see Figure 5).

Figure 5: A plot of seismic p-wave velocity against density. The empirical relationship between the two
physical parameters is called the Nafe-Drake relationship.

d) Borehole gravity measurements. As a gravimeter is lowered down a borehole, g gets smaller by an
amount proportional to the density of the rocks above the meter.

e) Nettleton’s method, which will be discussed later after we have studied the Bouguer correction.
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4. Gravity Meters

Gravity measurements may be absolute, that is the full value of g is measured, or relative, where only
variations in g from place to place are measured. For exploration purposes only relative measurements are
sufficient, because comparatively small and shallow features are of interest rather than the deep structure of
the Earth, which contributes most to the value of g. Torsion balances, pendulums and barometers have all
been used to measure relative gravity in the past, but today most instruments are spring-based mechanical
devices having a sensitivity of about 0.01 mgal. Absolute gravity measurements were made in the past with
pendulums, by measuring the period of oscillation:

T = 2π
√
l/g

where l is the length of the pendulum. Now measurements of absolute g are most accurately made by
measuring the free fall of a prism in a vacuum using laser interferometery. This method offers the same
sensitivity as relative meters (about 0.01 mgal), but is too slow and expensive for exploration. The very best
measurements are made using devices which levitate a superconducting mass, but these are not transportable
and serve as observatories to measure temporal variations in g.

The sensitivity of a mechanical gravimeter is given by dx/dg, where x is the deformation of the spring
system used to make the reading. Gravimeters are classed as stable or unstable, depending on whether
dx/dg is a constant or depends on g (that is, whether x is a linear or non-linear function of g). The terms
static and astatic are also used.

mg

x

k(X-x0)

x0

Figure 6. Linear gravity device (mass on a spring).

Linear meters: Linear meters have a mass, M , suspended from a spring with spring constant k. They are
not used today but serve as an introduction to gravimeter design. Balancing the spring force against gravity

k(x− x0) = Mg .

Differentiating yields
dx

dg
=
M

k
or dx =

M

k
dg .
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To achieve a sensitivity of 0.1 mgal, or 10−7×g, a variation of 10−6 cm (0.2 times the wavelength of visible
light) must be measured in a 10 cm spring.

A gravimeter’s sensitivity may be related to its period of oscillation (c.f. a pendulum). For a mass suspended
from a spring,

T = 2π

√
M

k
.

That is
M

k
=
T 2

4π2 .

Substituting into the sensitivity expression:

dx =
T 2

4π2dg .

Thus we see that T must be made as large as possible. For a linear system this means making M/k large
(i.e. large masses and long springs). Clearly, there is a limit to this, but T can be increased by going to a
non-linear system.

Non-linear Gravimeters: Figure 7 represents the principles of operation of a Lacoste-Romberg gravimeter.
Here xo is again the length of the spring at no load, and the apparatus is assumed to be at equilibrium.
Balancing the torques due to the mass’ weight and the spring force we have

aMg = bk(x− xo) cosφ = bk(x− xo)
y

x
.

g =
bky

Max
(x− xo) .

(when the bar is horizontal). Observe what happens when g gets smaller. The spring will lift the arm up
because of the imbalance in the torques and φ will get smaller, so cosφ gets larger and a greater proportion
of the spring force is transferred to the beam, lifting the arm up even more. We may demonstrate this
increased sensitivity by differentiating the above expression:

dg

dx
=
bkxoy

Max2

dx =
aMx2

bkxoy
dg

The sensitivity may be increased only so much by making the ratio aMx2/bky large, but xo may be made
very small by using a zero length spring. Such a spring is wound under tension as described in Telford et
al. so that the residual force exerted by the spring when it is fully contracted is equal to the spring constant
times the length of the contracted spring.

In practice such a device is operated as a null instrument, that is the actual displacement, which will no
longer be linearly dependent on g, is not measured but rather the amount of adjustment, to y and x in this
case, required to bring the arm back to the horizontal state is measured. The precise position of the arm is
monitored by bouncing a light beam off a mirror and into a graduated eyepiece. Such sensitive instuments,
capable of measuring 1 part of g in 108, are easily affected by environmental changes. Changes in air
pressure will alter the buoyancy of the masses, so the case must be sealed. Temperature has a huge effect
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Figure 7: Schematic diagram showing the operation of a non-linear gravimeter of the LaCoste-Romberg
type.
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Figure 8: Concept of a zero-length spring. Spring force is proportional to extension, and at some point the
spring coils physically bind up. However, if the force versus extension curve is extrapolated to zero force,
it passes though the origin and zero extension.

because of the thermal expansion and contraction of the mechanism, so the case is thermostatically heated in
the Lacoste-Romberg meter. (Another meter once in general use, the Worden, has temperature compensating
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bimetallic springs and is housed in a dewar bottle.) As dislocations in the construction material move, the
mechanism creeps, producing sudden offsets or tares. Needless to say bumping such a device is very bad,
and dropping a gravimeter? Well ...

Any motion of a gravimeter during measurement is problematic, as vertical acceleration makes the beam
bounce up and down and horizontal acceleration couples badly into the beam as well. In spite of this,
shipborne measurements can be made by putting the meter at the center of motion of the ship, mounting it
on a gimbaled platform, and heavily damping the mechanisms. Shipborne meters are read automatically,
rather than by human operation.

Gravimeters are calibrated by occupying two or more sites at which g is known, often from absolute
measurements, and assuming a linear relationship between number of screw turns and ∆g.

A gravity survey consists of measurements made with a gravimeter in a pattern over the surface of the earth.
The station spacing depends on the problem being solved. Regional surveys may have station spacings of
10 km or so, while detailed engineering or archaelogical work might require spacings of only a few meters.
If variations in a lithological interface are being mapped, the station spacing will need to be half the depth
to the interface or less. If the target structure is considered to be two dimensional (2D) then only a line
of stations might be occupied, otherwise the stations will be spaced on a 2D grid. However, before using
gravity to study geological structure or map ore bodies, variations in gravity due to other factors must be
understood. The gravity field of the Earth varies with

a) earth tides

b) and drift over time due to creep and temperature changes.

c) surface density and topography

d) change in elevation

e) change in latitude

All these effects may be much larger than the anomalies petroleum and mining geophysicists are interested
in, so they have to be estimated and removed from raw gravity data. To understand the latitude correction
we need to understand the gravity field of the Earth.

5. Earth’s gravity

The geoid. An equipotential surface is is simply a surface over which the potential is everywhere equal.
So, by definition, it requires no work to move over an equipotential surface, and it follows that g is always
perpendicular to the equipotential surface. We shall see seen that for a point or spherically symmetric masses
the equipotentials are spheres, easily verified by setting

U =
Gm

R
= constant

so R = constant also, defining spheres. Gravitational acceleration, g, is also constant. However, it is not
necessarily true that g is constant across equipotential surfaces, as it is for a sphere.

On Earth there is a special equipotential surface called the geoid, the equipotential corresponding to mean
sea level. It is clear that the sea surface is an equipotential, because if there were a potential gradient along
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Figure 9: Equipotentials and gravity over spherical and non-spherical mass distributions. g is constant over
spherical equipotenials, but not over equipotentials associated with more complicated mass distributions.

the surface there would be a gravitational force along the surface and the water would flow sideways. The
geoid is defined on land, and may be visualized as the mean sea level of water in narrow canals connected
to the oceans. The geoid is very complicated, and includes the effects of all anomalies at all size scales, as
well as the effect of Earth’s rotation. A simpler surface, which we can use to remove the effects of Earth’s
shape and rotation from gravity data, is the reference spheroid or ellipsoid. This is the oblate spheroid
which fits the geoid as well as possible, so g is very nearly perpendicular to it everywhere and is given by
the international gravity formula:

gR = 9.780327(1 + .0053024 sin2 λ− 0.0000058 sin2 2λ)m/s2

(this is the internationally agreed 1980 update) where the direction of g is assumed to be downwards, and λ
is the latitude being considered . Equivalently, this can be written as

g = 978032.7(1 + .0052792 sin2 λ + .0000232 sin4 λ) mgal .

Figure 10, from Dobrin, shows the difference between the geoid and the sheroid. One can see directly from
the gravity formula that sea-level gravity varies 0.5% (5,000 mgal) over the surface of Earth, from 9.7803
m/s2 at the equator to 9.8322 m/s2 at the poles with a mean value of 9.806 m/s2. Gravity is lower at the
equator because of the combined effect of Earth’s oblateness (the equatorial radius is 22 km larger than the
polar radius) and rotation (the outwardly directed centrifugal force opposes gravity).

6. Gravity Reductions

We are now in a position to consider the processing required to convert raw gravity measurements into useful
measurements (i.e. those that we can interpret). The gravimeter is only a relative instrument which will
give us the difference in gravity between two points, so one of the stations in a survey must be designated
a base station. This may be a point at which the absolute gravity is known, or simply a point which will be
designated as having zero gravity anomaly.

Drift and tide corrections: If a single gravity station were occupied continuously, the reading of the
gravimeter would not remain fixed but rather would drift. The drift is due to tides, which have a maximum
amplitude of 0.3 mgal, temperature changes, and creep in the meter’s mechanism. The temperature
coefficient and mechanism drift depend very much on individual meters.

The tidal variations are mainly caused by the varying gravitational effects of the sun and moon, but also
include the Earth’s deformation in response to these effects (several tenths of a meter!). This latter effect
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Figure 10: Difference between the geoid and reference spheroid, in metres. (from Dobrin).

accounts for abut 20% of the tidal vatiations. The tidal variations in gravity may be predicted, but often are
incorporated in the drift curve. In order to monitor the drift of a meter, base stations must be occupied every
hour or so during a survey. Base station readings may be made less frequently if some form of leapfrogging
is carried out, but still need to be occupied regularly to eliminate closure errors. The drift between base
station readings may be assumed to be linear, or models of tidal variations may be used to draw smooth
curves through the drift data. The accurate removal of drift necessitates the recording of time during every
gravity measurement.

Figure 12 illustrates a drift curve. A base station is occupied at the start of a gravity survey and re-occupied
every hour or so. The meter readings are plotted in relation to the first measurement and a curve drawn
through the base station data. Now the drift at any time can be estimated, and then removed, from any
gravity reading.

If a gravity survey is conducted over several days, the base station must be read at the start of each day, and
also after any breaks. If the survey extends into an area too far from the original base station, a new base
station must be tied to the first by repeated measurements between the two stations, so that measurements
tied to the second station may ultimately be tied to the master base station and thus the rest of the survey.

If a meter is knocked or jolted, it is possible to produce a sudden offset, or tare. Unlike drift due to tides and
creep, the effect of a tare should not be distributed evenly over data between base measurements. Rather,
if the meter is jolted, the last station should be occupied immediately to check for a tare and, if necessary,
estimate it. This then becomes a correction to be applied to all future readings, in addition to the drift
correction. If a base station reading is found to be much different from previous readings, a tare should be
suspected and the last set of gravity data searched for a sudden offset.
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Figure 11. Tides for mid-January 2005 at the latitude and longitude of San Diego.
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Figure 12: A drift curve. In this example 4 base-station readings have been made. Any other gravity
reading, made at a time between base station measurements, can have the drift correction estimated by linear
interpolation.

Latitude correction. We have seen that Earth’s gravity varies 5000 mgal as one goes from the equator to
the poles. The international gravity formula could be evaluated for every station in a gravity survey, but
unless one is conducting a regional study it is more convenient to linearize the formula to obtain a correction
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for each kilometer of north-south distance from the base station. We can write the gravity formula as

g = go(1 + α sin2 λ + βsin4λ)

then
dg

dλ
= 2goα sinλ. cosλ + 4goβ sin3 λ. cosλ

If we neglect the term in β and use 2 sinλ cosλ = sin 2λ we get dg/dλ = goα sin 2λ. To obtain a formula
in north-south distance s, rather than latitude, we have

dg

ds
=
dλ

ds

dg

dλ
=
goα

r
sin 2λ

(∂s/∂λ = r, so ∂λ/∂s = 1/r)
r

s

λ equator
Substituting go = 978 gal and r = 6378 km then

dg

ds
= 0.812 sin 2λ mgal/km

This correction is subtracted from stations further from the equator (i.e. more northernly stations in the
northern hemisphere).

Free air correction. Variations in elevation result in variations in gravity as a consequences of the inverse
square law. The gravity at a distance r from Earth’s center, is

g = G
m

r2

Again, we can obtain a correction for small variations in altitude by differentiating:

∂g

∂r
= −2

Gm

r3 = −2go/r

This time we substitute r = 6.367 × 106 m (an average value) and go = 980629 mgal (from the gravity
formula at 45◦) we obtain −0.3086 mgal/m. (Equatorial values for r and g yield −0.3067 mgal/m and
polar values −0.3093 mgal/m, but this small (1%) effect is usually ignored, as is the correction for extreme
elevations.) Because of this dependence on altitude, some level must be designated as the datum level and
all measurements corrected to that height. The negative sign implies that gravity gets smaller with altitude,
so the correction of 0.3 mgal/m is added to measurements made above the datum. Raw gravity corrected for
latitude and elevation is called the free air gravity or free air anomaly. Note that to preserve an accuracy of
0.01 mgal, elevation must be known to about 3 cm. For a regional gravity survey, aneroid barometers may be
used to measure elevation, but since these devices are precise to 0.5 m at best, they are not useful for mining
or petroleum gravity surveys. To achieve the required elevation control, all stations must be occupied by a
surveying team; an operation which usually costs many times that of collecting the gravity data. Today the
GPS system may be just good enough for gravity surveying – although not optimized to provide elevation
(c.f. lateral position), centimeter level accuracy can be achieved using differential, kinematic GPS surveys.

Bouguer correction. For two stations at different altitudes, it is not only the difference in distance from the
Earth’s centre that affects gravity, but also the different amounts of mass between the stations and the datum
level.
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Figure 13: Illustration showing the need for the Bouguer correction, to compensate for the attraction of the
mass beneath station 2 that does not exist beneath station 1.
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Figure 14: To compute the Bouguer effect, we integrate the effect of an infinite slab of vertical thickness
h on the point P , on the surface of the slab. This is most easily accomplished in a cylindrical coordinate
system.

To correct for this matter, we must compute its effect. The Bouguer correction makes the approximation
that the Earth’s surface is flat and at the same elevation as the station being considered, i.e. a slab of infinite
extent (deviations from this approximation are corrected, if necessary, by making the terrain correction
described below). Recall from page 2 that

U = −
∫
V

Gρ

R
dxdydz .

We will do the computation in cylindrical coordinates, remembering that the volume element is now
r.dr.dθ.dz. Thus

U = −Gρ
∫
V

r

R
drdθdz = −Gρ

∫
V

r√
r2 + z2

drdθdz

gz = −dU
dz

= Gρ
∫
V

zr

(r2 + z2)3/2
drdθdz
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so using integration limits which define an infinte slab we have

gz = Gρ

h∫
0

dz

∞∫
0

dr

2π∫
0

zr

(r2 + z2)
3
2

dθ

There is no dependence on θ so

gz = Gρ

h∫
0

dz

∞∫
0

dr
zrθ

(r2 + z2)
3
2

∣∣∣∣2π
θ=0

= 2πGρ

h∫
0

dz

∞∫
0

zr

(r2 + z2)
3
2

dr

= −2πGρ

h∫
0

dz
z

(r2 + z2)
1
2

∣∣∣∣∞
r=0

= 2πGρ

h∫
0

dz

= 2πGρz|hz=0 = 2πGρh

or 0.04188ρ mgal/m if ρ is expressed in the cgs units of g.cm−3. Since we are trying to remove the effect
of the slab, this correction is subtracted when the station is above the datum. The average crustal density is
2.67 g/cm3, and this value may be used if no sensible estimate of the near-surface density is made. However,
it is most advisable to make a better guess than this, and the most effective way is using Nettleton’s method:

dz

drr

dΘ

Z

Θ

rdΘ

Figure 15: Volume element in cylindrical coordinates.

A gravity profile is conducted over a small hill. The smallness of the hill supposedly ensures that variations
in gravity due to geological structure are also small. Elevation and Bouguer corrections are made to the
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Figure 16: Nettleton’s method. A gravity profile is made over a small hill and the Bouguer corrections
made using various values of density. The density corresponding to that of the hill will have least evidence
of topography in the signal. Alternatively, one can plot free-air gravity against elevation – the slope is just
the Bouguer correction.

data using a series of values for ρ. The profile dispaying the least correlation with topography was reduced
using the most correct value of surface density. This may be chosen by eye, or the correlation minimised
using statistical methods.

Valleys should not be used for Nettleton’s method, because the sediments which accumulate at the bottoms
of valleys are not usually typical of the surrounding hills. Data which are reduced using the latitude,
elevation and Bouguer corrections are termed the Bouger anomaly or gravity. The choice of surface density
can be checked after all the data in a survey have been reduced by again looking for a correlation of Bouguer
gravity and topography. Beware, however, of correlations in geology and topography, which could well
produce genuine gravity anomalies.

Terrain corrections: If the topography is severe a correction may be required for the effect of the surrounding
hills and valleys, both of which reduce the gravity from the value which would be measured over a flat
Earth. Corrections may be made manually by marking the station on an accurate topographic map and
centering a transparent template, upon which is printed radially symmetric zones, over the station. The
average elevation in each zone is estimated and tabulated and multiplied by a factor for each zone size before
summing the effects of all the zones. The factors giving the gravitational effect of the radial zones are easily
derived by integrating over the appropriate limits in cylindrical coordinates. Because both hills and valleys
reduce gravity, the correction is always positive. Such manual computation of terrain corrections is very
tedious. The calculations may be done by computer, but the elevations must be digitised, using a very fine
grid spacing close to the gravity stations. The effort required to enter the topographic data makes the use
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of a computer prohibitive unless an extensive survey is being conducted or digital topography is available
from some other source.

The free air correction, Bouguer correction, and terrain correction are all really about the same thing–
correction for height. Why not combine them? Well, the free air correction is used for marine gravity,
because the ocean is flat and the effects of topography on the seafloor are often unknown (in fact, satellite
estimates of gravity are used to recover seafloor topography). Terrain corrections are complicated to make,
and are not important except for extreme topography, and are usually ignored.

Regionals and residuals: Removal of regional gravity gradients is possibly the most important part of
gravity interpretation. The part of the gravity data that is going to be interpreted in terms of structure,
usually local structure, is often termed a gravity anomaly. The regional gravity field the becomes, by
definition, that part of the gravity field which is not of primary interest. The object is to remove this part of
the field to reveal the residual, the variation in gravity due to the structure which we hope to map, so that
our interpretation and modelling reflect the local structure.

residual

regional

observed gravity

Figure 17: Distinction between regional gravity and residual gravity. The regional gravity field is caused
by large-scale geological features, and imposes a trend on the small-scale anomalies that are of interest
in local gravity surveys. The regional trends must be removed from the local surveys before modeling or
interpretation is carried out.

The removal of the regional gravity assumes a knowledge we are not likely to posess, that is, a relatively
complete understanding of large scale density structure. This makes the problem of regional removal very
poorly defined and therefore difficult to solve. Regional gravity maps can provide a guide to trends in the
gravitational field that can be removed from local gravity surveys. There are also several mathematical
schemes used to separate regional variations from the observed gravity. These schemes are of assistance in
the interpretation of gravity surveys, especially contoured maps (as apposed to profiles). However, the skill
and knowledge of the geophysicist, who we expect to be familiar with the large scale variations in geological
structure which are responsible for the regional variations in gravity, is ultimately the most reliable tool in
the separation of regional and residual.
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Figure 18: Bouguer gravity (left) over massive sulphide ore body (in southeastern Australia) and the same
anomaly after removal of a regional gradient (right). The position of the ore body, determined by drilling,
is marked by the shading.

7. Review of field practice

So, the steps in the collection and reduction of gravity data are (in order):

a) Collect the gravity data, recording time and position at each reading and returning periodically to the base
station.

b) Convert the gravity readings to mgal.

c) Correct the gravity readings for drift and tides.

d) Correct the data for latitude, or N-S distance.

e) Correct the data for height using both free-air and bouger corrections and some assumption or measurement
of bouger density.

f) Correct the data for topography, if needs be.

g) Remove regional gradients, if needs be.

At this point the gravity map or profile is available for interpretation, which is our next subject.
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8. Gauss’ Law

We are now going to establish a result which will be used later to compute the total mass of, say, an ore
body, from gravity data. This is an extremely powerful use of the gravity method, and is the reason why
gravity measurements might be made over an ore body that is already quite well known from drilling data
(to estimate the total reserve).

m

Θ

P
ds

g

S

m'
g1

g2

Ω

r

d

Figure 19: A closed surface S containing mass. Mass elementm is inside S and mass elementm′ is outside
the surface.

Consider a closed surface, S, enclosing a point massm (Figure 19). At pointP , we can form an infinitesimal
element of the surface S. A planar surface may be described by a vector whose magnitude is the area of
the surface and whose direction is the (outward) normal to the surface, so in the above case ds describes the
surface element.

Now we wish to introduce the concept of flux. The surface integral of a vector field F,∫
S

F · ds

is called the flux of F through the surface S. Note that the dot product (x · y = x.y.cosθ, where θ is the
angle between x and y) has the effect of taking the component of F perpendicular to the surface. We want
to compute the total flux through the surface S surrounding the mass m:∫

S

g · ds =
∫
S

g.cosθds =
∫
S

G.m.cosθ.ds
r2

Before performing the integration we note that
−cosθ.ds

r2 = dΩ,

where dΩ is the solid angle subtended at m by the surface element ds. (The minus sign comes from the fact
that θ is always > 90o). Now we have∫

S

g · ds =
∫

unit sphere

−G.m.dΩ = −4πGm.

SIO182 (March 28, 2022): Gravity 20



S

Figure 20: A planar surface may be described by a vector, S, whose magnitude is the area of the
surface and whose direction is the (outward) normal to the surface.

We can ignore the contributions to the flux of all masses outside the surface S; referring to the diagram it
may be seen that masses outside the surface subtend two surface elements with identical solid angles but
with flux of opposite signs, cancelling. Thus we have the important result, Gauss’ Law, that the total flux
through a closed surface is equal to −4πG times the mass enclosed by the surface. For an extended mass
of density ρ ∫

S

g · ds = −4πG
∫
V

ρ dv

The equation derived above is very useful. For example, we can show that outside a spherical distribution of
mass, the gravitational field is the same as though the mass were all concentrated at a single, central point:

r

g P

•

•

O

Figure 21: Spherically symmetric mass centered on O. An observation of g is made at point P , a distance
r from the center.

Consider a spherically symmetric distribution of mass with centre O. If we take a point P a distance r from
the mass’ centre, a sphere through P centred on O clearly has g perpendicular and equal over its entire
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surface, so it is easy to compute the surface integral;∫
S

g · ds = −4πr2g

Applying Gauss’ Law this is equal to
−4πGM = −4πr2g

where we have set the total mass of the sphere to M . Thus the gravitational attraction anywhere outside the
sphere is given by

g = G
M

r2

which is the same expression for a point mass at O. Remember that we used this result to compute the
gravity at the surface of the Earth knowing only the Earth’s total mass. But now consider the problem of
predicting the above mass distribution from gravity measurements. One cannot distinguish any symmetric
mass distribution from another. This is an example of non-uniqueness in geophysical prospecting. There
are many others. As a general rule, geophysics cannot tell us exactly what the internal structure of the Earth
is, and this must be remembered at all times during the interpretation of geophysical data. Geophysics is
useful when a sensible assumption may be made (e.g. that the above sphere is of uniform density), when
a unique parameter such as total mass may be estimated, or when additional data is required to distinguish
between several geologically reasonable hypotheses.

This exercise illustrates another aspect of gravity surveying. It is only lateral variations in rock mass or
density that are discernible. Layered or radially symmetric variations in density are never resolvable from
the outside of the mass distribution, which is where we always are at the surface of the earth.

We also note that since the mass of Earth is large, and it is mostly radially symmetric in density, the field is
dominantly vertical at the surface. Indeed, the direction of gravity is normally used to define the vertical.
Thus, when we consider the effect of lateral variations in the gravity field, we will be looking only at the
effect on the vertical field.

9. Excess mass calculation in gravity.

From Gauss’ Law (pages 4-6) we have that the normal component of gravitational acceleration integrated
over a closed surface is proportional to the total mass enclosed within that surface:∫

S

g · ds = 4πGM

In geology we are not working with masses in free space, but rather differences in density between host
rocks and the structure of interest (e.g. a metalliferous ore body), so instead of total mass we must consider
excess mass, that is, how much more mass is represented by the structure than would be there if only the
host rock existed. Quantitatively,

excess mass =
∫
V

(densitystructure − densityhost) dv

The excess mass computation, if correctly done, yields a unique result which does not depend on any
assumptions about the shape of the body. It is a very powerful tool for esimating tonnages of ore or the
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total size (in the sense of mass) of a structure. The known total mass may be used as a constraint for more
ambitious interpretations of gravity anomalies.

A convenient surface to consider for our Gauss’ Law integration is a plane at the surface of the Earth and a
hemisphere below it:

R ore body

S

Earth's surface

Figure 22: Geometry for excess mass calculation.

We have that ∫
S

g · ds =
∫

plane

g · ds +
∫

hemisphere

g · ds = 4πGM

where nowM denotes excess mass. Now,R, the radius of the hemisphere, may be made as large as we like,
so large in fact that M appears as a point mass at the surface of the Earth. The integral over the hemisphere
may then be evaluated by integrating the relation for a point mass:

g = −G m

R2 r

but it is much easier to apply Gauss’s Law again and state that from symmetry, the integral over the
hemisphere is 2πGM ; half the integral over the whole sphere which from Gauss’ Law is simply 4πGM .
So now we have ∫

plane

g.ds = −2πGM

Since gz is in the opposite direction to ds, we can drop the minus sign and write total excess mass M as

M =
1

2πG

∞∫
−∞

dy

∞∫
−∞

dx gz

where gz is the vertical component of gravity; both what we measure and the component perpendicular to
our chosen surface. This integration may be applied to real data by using numerical integration procedures
or simply by gridding and summing:

M =
1

2πG

∑
grid elements

gi.Ai
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where Ai is the area of each grid element and gi is the gravity anomaly in that element. If all the element
areas are the same (say, A), the Ai can be taken outside the sum:

M = A
1

2πG

∑
grid elements

gi

Obviously the integration cannot be taken to infinity, so the integration or summation is terminated when
the tails of the anomaly get very small. Herein lies the weakness of the excess mass calculation: for the
result to be accurate:

a) The tails must be small, and

b) The residual must be well estimated (because the removal of the residual will very much determine
the size of the anomaly tails.

The excess mass of a 2D body is given by:

M =
1

2πG

∞∫
−∞

dxgz

where now M is the total excess mass per unit length of the body.

10. Depth rules in gravity.

We know that a point mass will produce the sharpest possible gravity anomaly from a given depth to the top
of a body (see Figure 27). This is the basis for a simple maximum depth rule in gravity.

Figure 23. All these bodies will produce the same gravity anomaly (in a schematic sense), but the deepest
one must be a point mass.
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Figure 24: Geometry for point mass depth calculation.

Consider a point mass at depth z. We know that g due to a point mass is given by

g =
GM

r2 r

so the vertical component at P is given by

gz = gcosφ =
GM

r2 ·
z

r
= GM

z

(x2 + z2)
3
2

It should be clear that the maximum gz occurs when x = 0 (i.e. directly over the anomaly) and so is

gmax(x = 0) =
GM

z2

gmax

gmax
2

W1/2

x=0x=x1/2

Figure 25: Definition of half width at half maximum.

Now, we know that the anomaly will be sharper as z gets smaller, but we need to quantify this, so we will
introduce the half-width at half-maximum. (Be careful not to confuse this measure with the full width at
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half maximum.) The x coordinate of this half-width, x1/2, is found by solving

gmax
2

=
GM

2z2 = GM
z

(x2
1/2 + z2)

3
2

so
2z3 = (x2

1/2 + z2)
3
2

and if we take both sides to the 2/3 power

(2z3)
2
3 = (x2

1/2 + z2)

we have
(2

2
3 − 1)z2 = x2

1/2

zmax =
x1/2√
2

2
3 − 1

or
zmax = 1.3x1/2

Another maximum depth rule may be obtained from differentiation. This is a little complicated but yields:

zmax =
0.86|gmax|
|(∂g/∂x)max|

If the anomalies are known to be two-dimensional, then the analogue of the point mass is the line mass (a
cylinder of zero diameter). The anomaly for such an object is broader than that of a point mass, so the above
rules yield maximum depths which are uneccessarily conservative. However, a similar approach may be
taken to yield

z = 1.0x1/2

and

zmax =
0.65|gmax|
|(∂g/∂x)max|

for 2D bodies.

11. Forward modelling of chosen shapes.

If we have reason to believe that the structure causing a gravity, magnetic or electromagnetic anomaly is
of a certain shape, we can compute the geophysical effects of the general form of such a shape, and then
by trial and error or manipulation of the expressions for the shape we may use the data to determine the
dimensions of our structure. Thus, if we have the gravity profile across a structure which we believe to be a
normal fault of geometry we may estimate the gravity at the station from first principles.

Two dimensional anomalies. The above structure is 2D, and this will occur so often that it is worth deriving
an expression for the general 2D case. We recall that the expression for the potential due to a general (3D)
body is

Up = G∆ρ

∫ ∫ ∫
dx dy dz

R
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Figure 26: Geometry for calculation of gravitational effect of a fault.

so for a 2D body we will have

Up = G∆ρ

∫
dx

∫
dz

∞∫
−∞

dy

R

The last integral is tricky to evaluate, but Telford et al. (page 8) show it to be equal to −2 ln(R) so we have
that

Up = −2G∆ρ

∫
dx

∫
dz ln(R)

and therfore

gz = −∂U
∂z

= 2G∆ρ

∫ ∫
z

R2 dxdz

remembering that R = (x2 + z2)1/2.

Back to our fault: We know that the gravity method is only sensitive to lateral variations in density, so all
rocks above the depth d1 and below the depth d2 will not contribute to the anomaly. That is, we need only
integrate d1 to d2, which is equivalent to considering a semi-infinite slab. If the origin is considered to be
at the station then

gz = 2G∆ρ

d2∫
d1

dz

∞∫
s

dx
z

x2 + z2

where I looked up
∫
dx/(x2 + a2) = (1/a) tan−1(x/a) using equation 3.3.21 of Abramowitz and Stegun

(Dover, 1972) to get

= 2G∆ρ

d2∫
d1

dz

[
z

1
z

tan−1(x/z)
]∞
x=s

= 2G∆ρ

d2∫
d1

dz

[
π

2
− tan−1(s/z)

]
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We will have to integrate w.r.t. z, so we note that tan−1(x) = π/2− tan−1(1/x), which removes the π/2:

gz = 2G∆ρ

d2∫
d1

dz tan−1(z/s)

and allows us to look up tan−1(x/a) in a table of integrals (eq. 2.822 of Gradshteyn and Ryzhik, A.P., 1965)
to get

gz = 2G∆ρ

[
z tan−1(z/s)− s

2
ln(s2 + z2)

]d2

z=d1

So

gz = 2G∆ρ

[
d2 tan−1(d2/s)−

s

2
ln(s2 + d2

2)− d1 tan−1(d1/s) +
s

2
ln(s2 + d2

1)
]

= 2G∆ρ

[
d2 tan−1

(
d2
s

)
− d1 tan−1

(
d1
s

)
+
s

2
ln
(
s2 + d2

1
s2 + d2

2

)]
If the fault outcrops, i.e. d1 = 0, then

gz(s) = 2G∆ρ

[
d2 tan−1

(
d2
s

)
+
s

2
ln
(

s2

s2 + d2
2

)]
These are analogous to expressions 2.70 and 2.71 of Telford et al., but arrived at by a more direct route.

How will these expressions help us? Well, we obviously can plug in some numbers for d1, d2 and ∆ρ to get
a profile across the fault, but there are some more subtle ways. Firstly, we can obtain an expression for gz(0)
by using tan−1(d/s) = π/2 − tan−1(s/d) again, which equals π/2 if s is zero, so for the non-outcropping
fault gz(0) = πG∆ρ(d1 − d2). Observe also that if −s is substitued for s the expression just reverses sign,
showing the anomaly to be symmetrical about the fault. If the field data are not symmetrical across then the
fault model may be discarded immediately. Unfortunately, the above expressions are not in a nice form for
getting the behaviour of gz(±∞), but we know that an infinite distance away from the fault gravity must be
zero, and so the symmetry about gz(0) = πG∆ρ(d1 − d2) gives gz(∞) = 2πG∆ρ(d1 − d2). Compare this
with the formula for a Bouguer slab! So we see that the total difference in gravity across the fault gives us
an idea of ∆ρ times the fault’s throw. How deep is the top of the fault? The shallower the fault, the sharper
the anomaly, which we would expect.

We can quantify this by finding an expression for the slope at s = 0. We find that(
∂gz
∂s

)
s=0

= G∆ρ ln(d2/d1)

which we can invert to get
d2
d1

= exp
(

1
2G∆ρ

(
∂s

∂gz

)
s=0

)

So, if we know ∆ρ, we can solve for the rest of the fault geometry.

The above computations illustrate how forward modelling helps us to interpret geophysical data. If the
reasoning behind this example is understood, there is no advantage to going through the calculations for
a number of different bodies; one would only be learning more about integration and differentiation, not
geophysics. Whenever a new problem is encountered, the required expressions may be either derived from
one’s understanding of the physics, or looked up in a text like Telford et al.
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Figure 27: Gravity profiles over faults of throw 100 m and density contrast 1.0 g/cm3 at depths of 50, 100,
150 m etc.
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