

Upgraded gravity anomaly base of the United States

G. RANDY KELLER, University of Texas at El Paso, U.S.
THOMAS G. HILDENBRAND, U.S. Geological Survey, Menlo Park, California, U.S.
ROBERT KUCKS, U.S. Geological Survey, Denver, Colorado, U.S.
DAN ROMAN, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, U.S.
ALLEN M. HITTELMAN, National Oceanic and Atmospheric Administration, Boulder, Colorado, U.S.

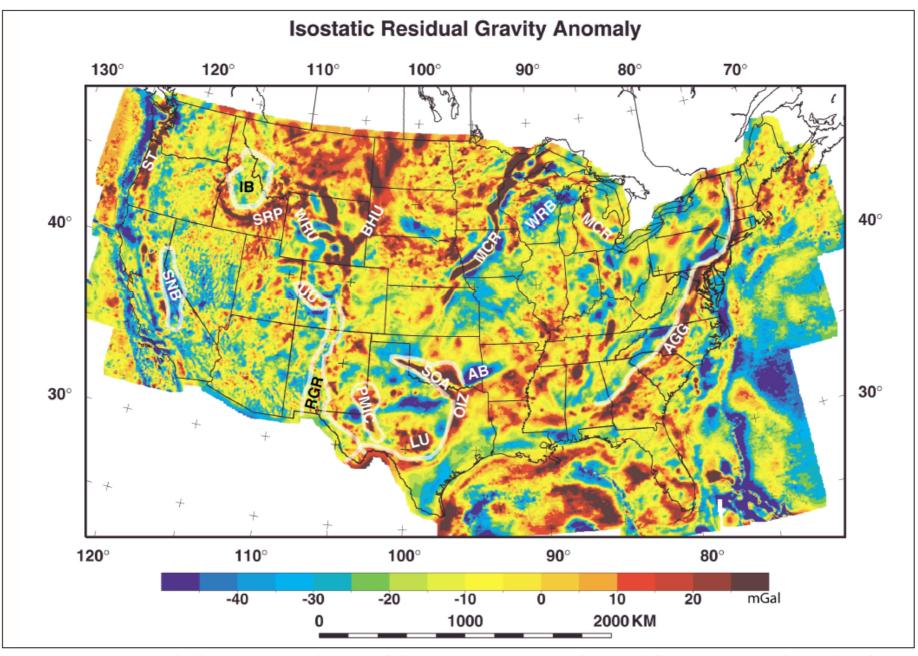
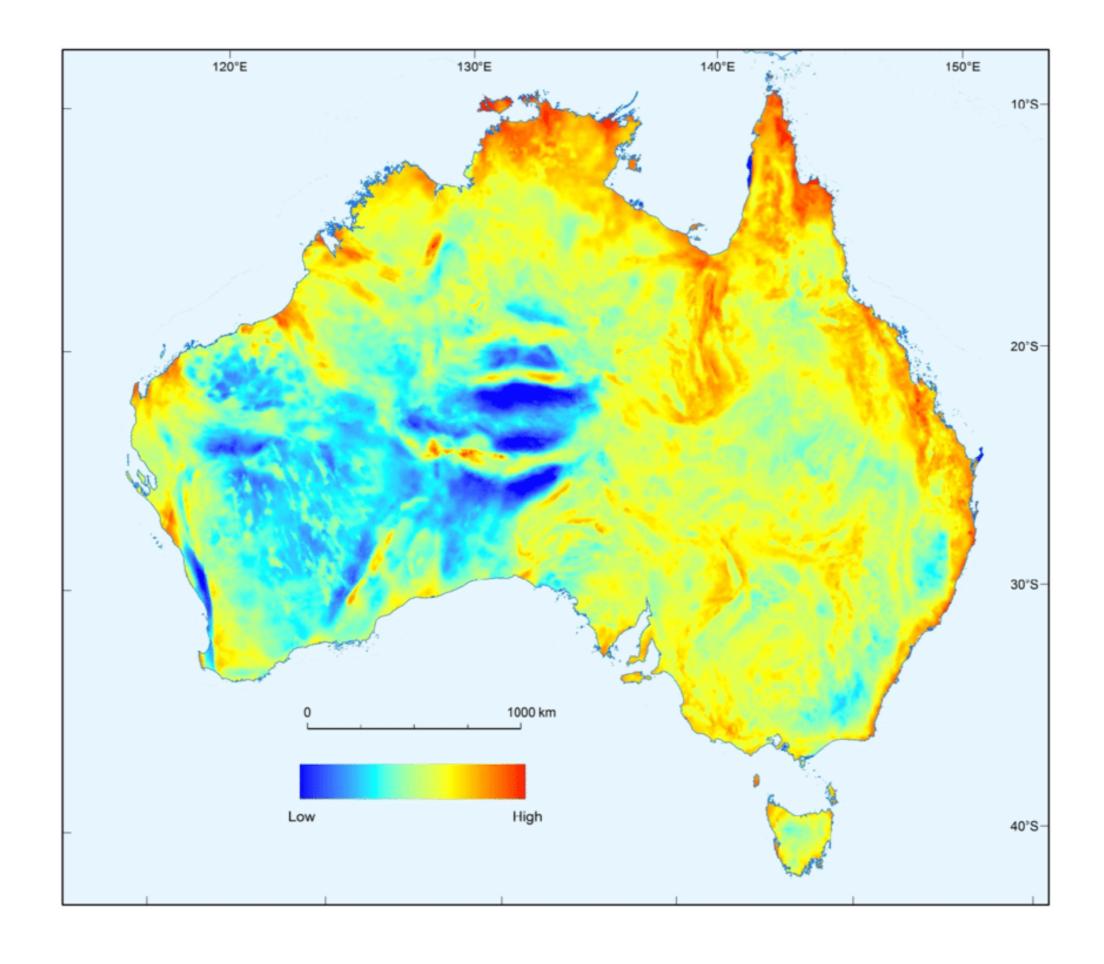
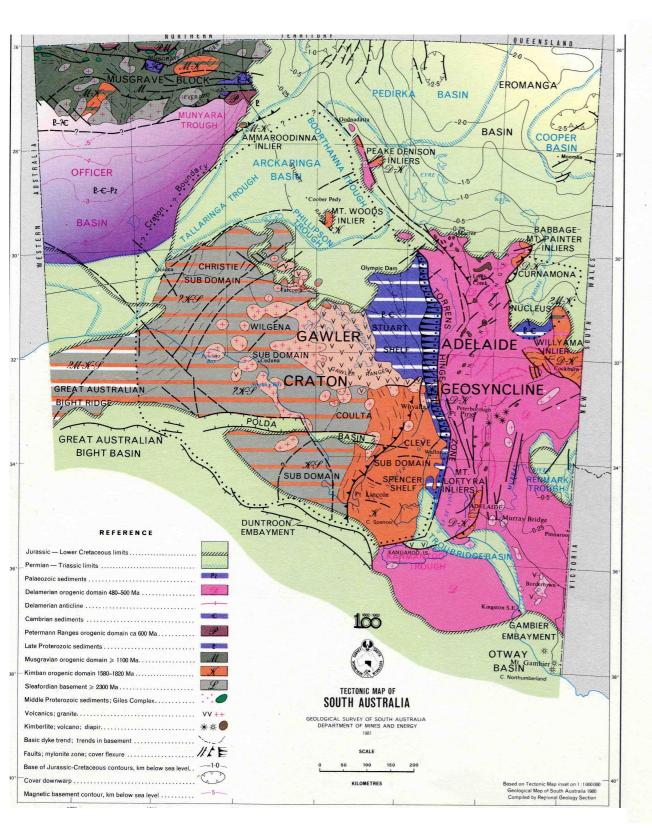
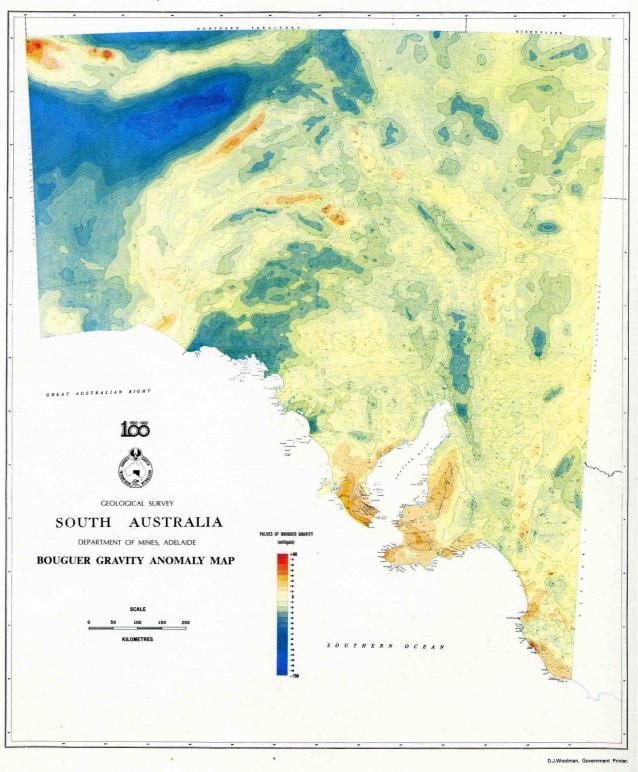
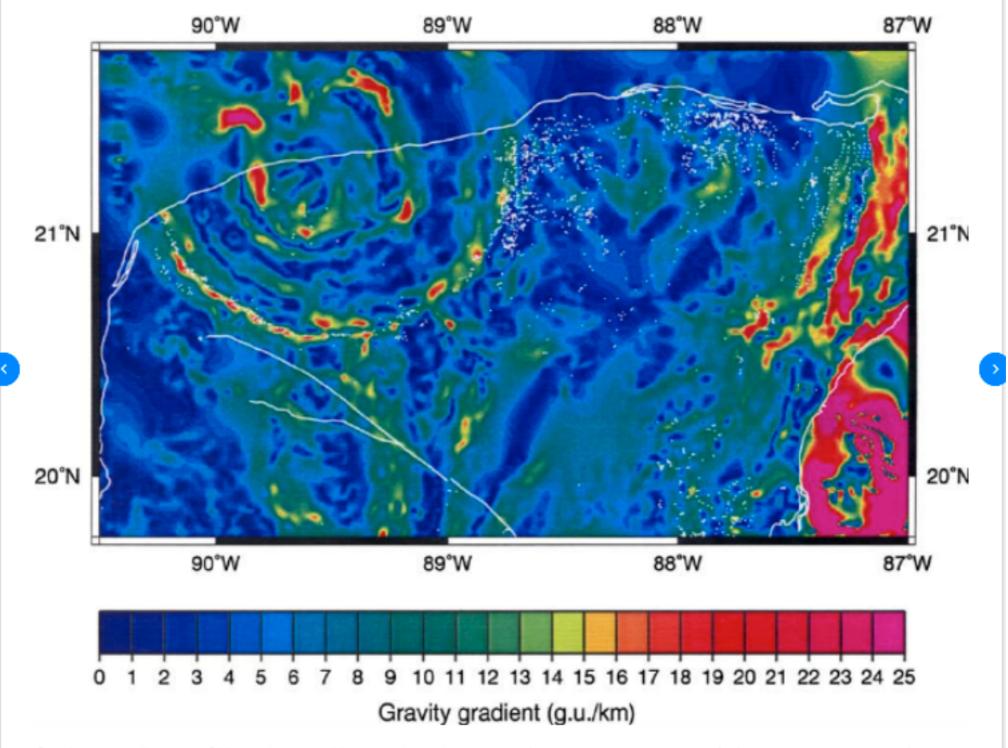





Figure 1. Isostatic residual gravity anomaly map of the conterminous United States (after Simpson et al., 1986). A few major gravity features are highlighted, such as the highs related to the Snake River plain (SRP), Siletz terrane (ST), Midcontinent rift system (MCR), Uncomphagre uplift (UU), Pecos mafic igneous complex (PMIC), Southern Oklahoma aulacogen (SOA), Llano uplift (LU), Black Hills uplift (BHU), Wind River uplift (WRU), and Ouachita interior zone (OIZ) and the lows associated with the Sierra Nevada batholith (SNB), Idaho batholith (IB), Rio Grande rift (RGR), Arkoma basin (AB), and Wolf River batholith (WRB). The Appalachian gravity gradient (AGG) that marks the ancient margin of North America is also labeled.



Download

View publication

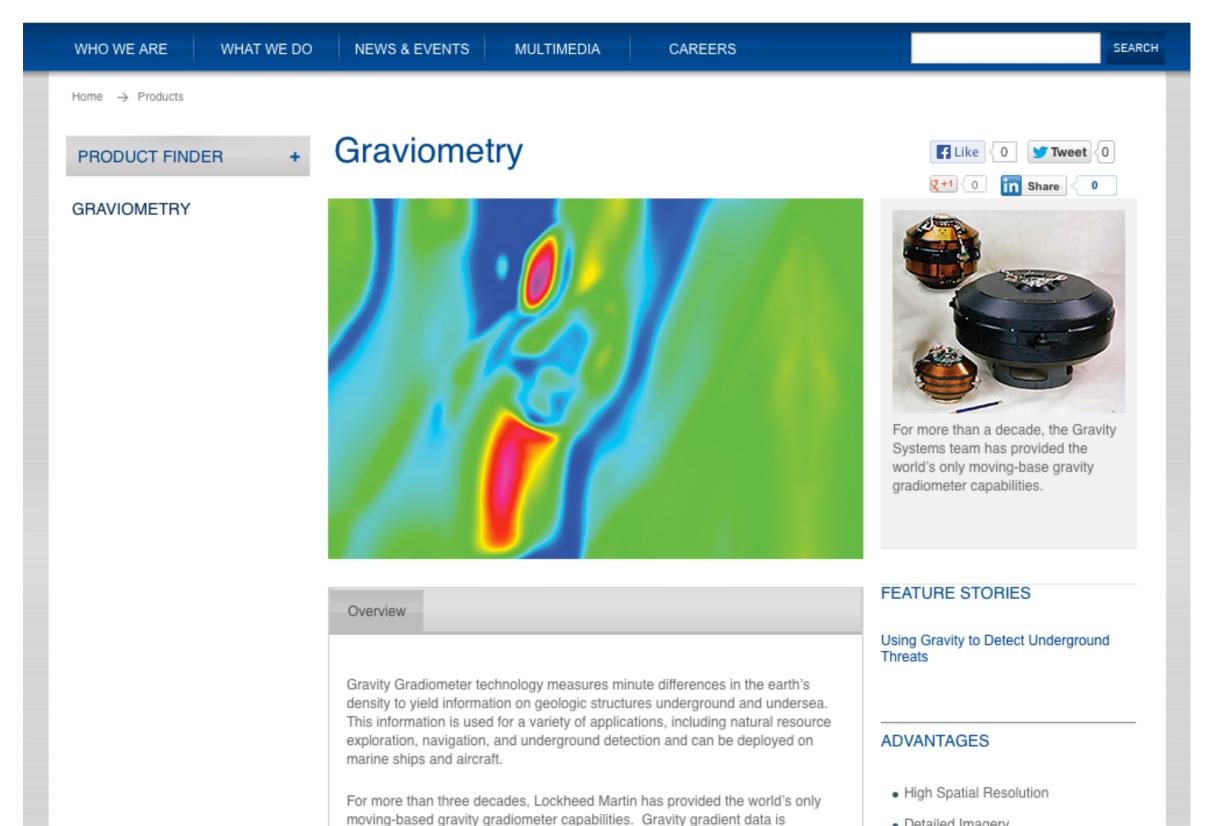
~

Gravity anomalies over Chicxulub crater. Horizontal gravity gradient (gravity units per kilometre) showing the concentric circular gravity pattern over the buried Chicxulub structure (data from Connors et al. 1996). Yucatan Peninsula coastline contour is marked by the white curve. Approximate geometric centre is on the coastline at Chicxulub Puerto (see Figure 8).

Shipboard gravimeter

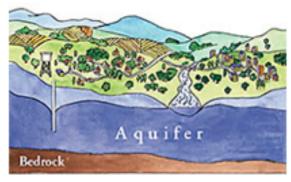
http://zlscorp.com/

LaCoste-Romberg model G


http://deepearthscience.blogspot.com/

Airborne Gradiometers: Bell Aerospace -> Bell Geospace -> Lockheed Martin -> Fugro.

INVESTORS I MEDIA I SUPPLIERS I EMPLOYEES



APPLICATIONS

Mineral and hydrocarbon exploration

Aquifer detection

Geothermal Exploration

Underwater navigation and collision avoidance

Terrain estimation

Underground tunnel and void detection

Lockheed Martin

Notice the submarines - that's where the Bell gradiometer probably started in the "Hunt for Red October" it was leaked that the US was using gravity for terrain following.

DEPLOYMENT PLATFORMS

Main page Contents

Current events
Random article

About Wikipedia

Contact us Donate

Contribute

Help

Learn to edit

Community portal

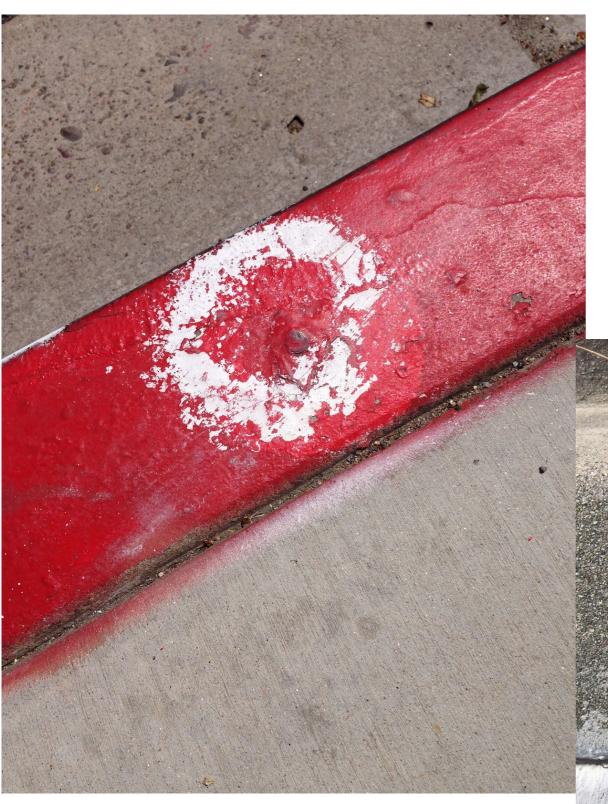
Article Talk Read

The Hunt for Red October (film)

From Wikipedia, the free encyclopedia

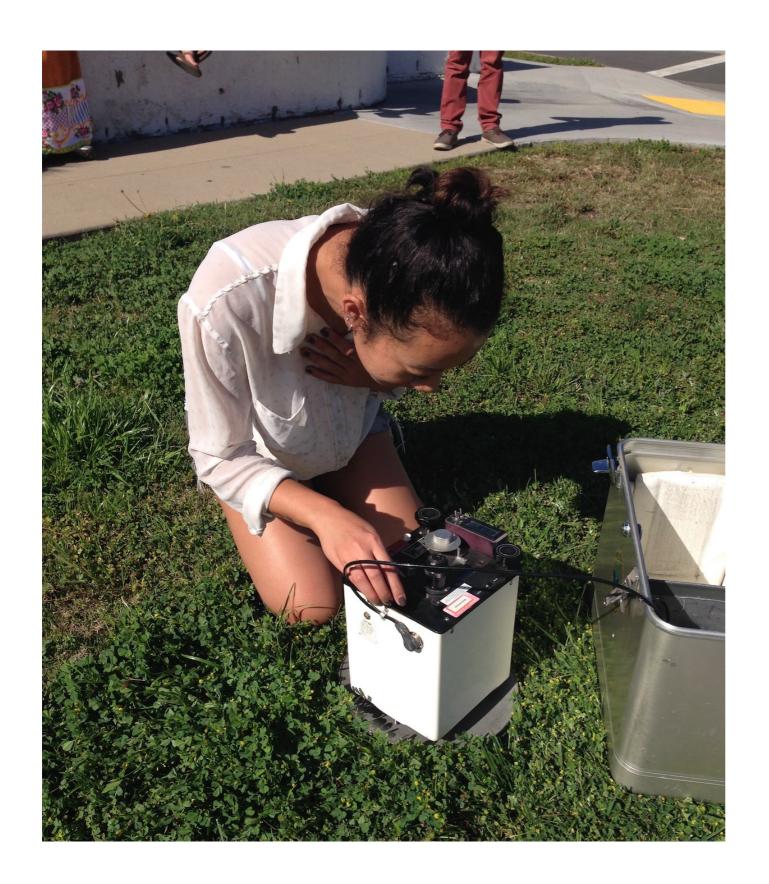
The Hunt for Red October is a 1990 American submarine spy thriller film directed by John McTiernan, produced by Mace Neufeld, and starring Sean Connery, Alec Baldwin, Scott Glenn, James Earl Jones, and Sam Neill. The film is an adaptation of Tom Clancy's 1984 bestselling novel of the same name. It is the first installment of the film series with the protagonist Jack Ryan.

The story is set during the late Cold War era and involves a rogue Soviet naval captain who wishes to defect to the United States with his officers and the Soviet Navy's newest and most advanced ballistic missile submarine, a fictional improvement on the Soviet Typhoon-class submarine. A CIA analyst correctly deduces his motive and must prove his theory to the U.S. Navy before a violent confrontation between the Soviet and the American navies spirals out of control.

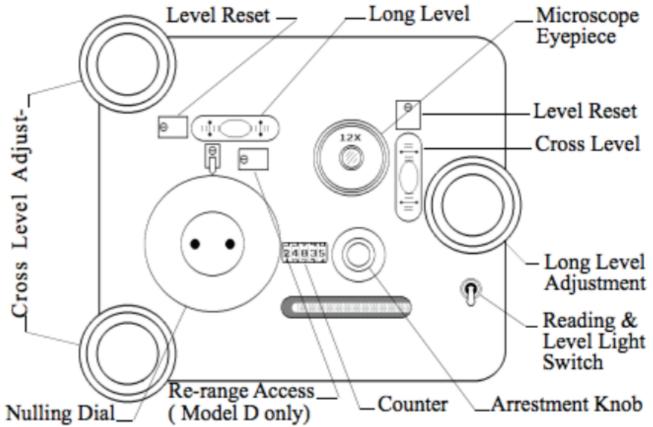


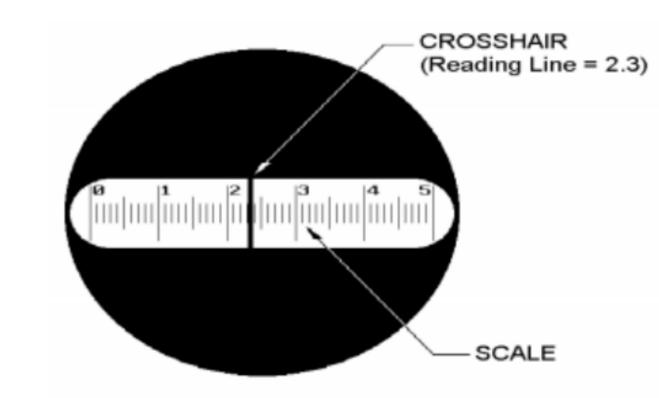
Search Wikipedia

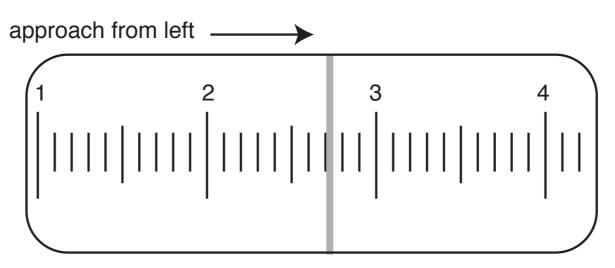
View history

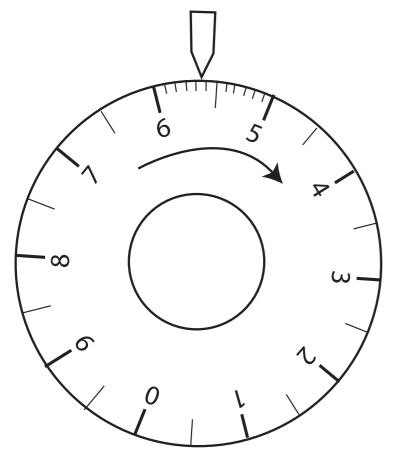

The film caused a minor sensation in the black projects submarine warfare technology community. [14][15] In one scene, where USS *Dallas* is chasing *Red October* through the submarine canyon, the crew can be heard calling out that they have various "milligal anomalies". This essentially revealed the use of gravimetry as a method of silent navigation in US submarines. Thought to be a billion dollar black project, the development of a full-tensor gravity gradiometer by Bell Aerospace was a classified technology at the time. It was thought to be deployed on only a few *Ohio*-class submarines after it was first developed in 1973. Bell Aerospace later sold the technology to Bell Geospace for oil exploration purposes. [16] The last Typhoon-class submarine was officially laid down in 1986, under the name *TK-210*, but according to sources was never finished and scrapped in 1990.[17]

SIO 182 data collection

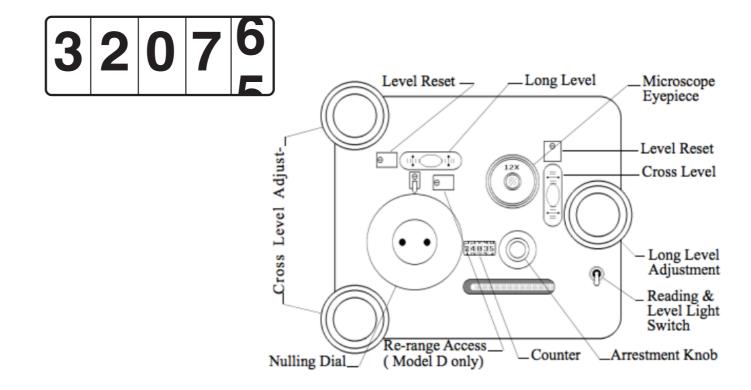

75	FIRST AVENUE	LAUREL ST	2067	17192	226.885	* SWBP
76	FIRST AVENUE	LEWIS ST	2141	17192	294.09 SEBP	
77	FIRST AVENUE	MAPLE ST	207	1719	230.046	NWBP
78	FIRST AVENUE	MONTECITO WAY	2145	17192	297.189	NEBP
79	FIRST AVENUE	NUTMEG ST	207	1719	236.049	NEBP
80	FIRST AVENUE	PALM ST	208	1719	254.339	NEBP
81	FIRST AVENUE	PENNSYLVANIA	AVE	211	1719 275.99	4 NWBP
82	FIRST AVENUE	QUINCE ST	208	1719	251.047	NEBP
83	FIRST AVENUE	REDWOOD ST	208	1719	249.101	NEBP
84	FIRST AVENUE	ROBINSON AVE	212	1719	281.034	NWBP
85	FIRST AVENUE	SPRUCE ST	209	1719	259.081	NEBP
86	FIRST AVENUE	THORN ST	209	1719	260.977	NWBP
87	FIRST AVENUE	UNIVERSITY AV	Е	212	1719 284.15	4 NWBP
88	FIRST AVENUE	UPAS ST	210	1719	263.546	SWBP
89	FIRST AVENUE	WALNUT AVE	210	1719	276.152	NEBP
90	FIRST AVENUE	WASHINGTON ST	2134	17193	290.792	SEBP
91	SECOND AVENUE	ASH ST 2025	17195	72.461	* NEBP	
92	SECOND AVENUE	BEECH ST	202	1719	80.898 NWBP	
93	SECOND AVENUE	BROADWAY	2010	17198	42.711 * NEBP	IN TOP INLET
94	SECOND AVENUE	'C' ST 2013	17194	44.355	* SWBP	
95	SECOND AVENUE	ELM ST 2040	17194	121.78	7 * SWBP	
96	SECOND AVENUE	'F' ST 200	1719	25.08	SWBP	
97	SECOND AVENUE	'G' ST 199	1719	20.06	SWBP	
			` `			



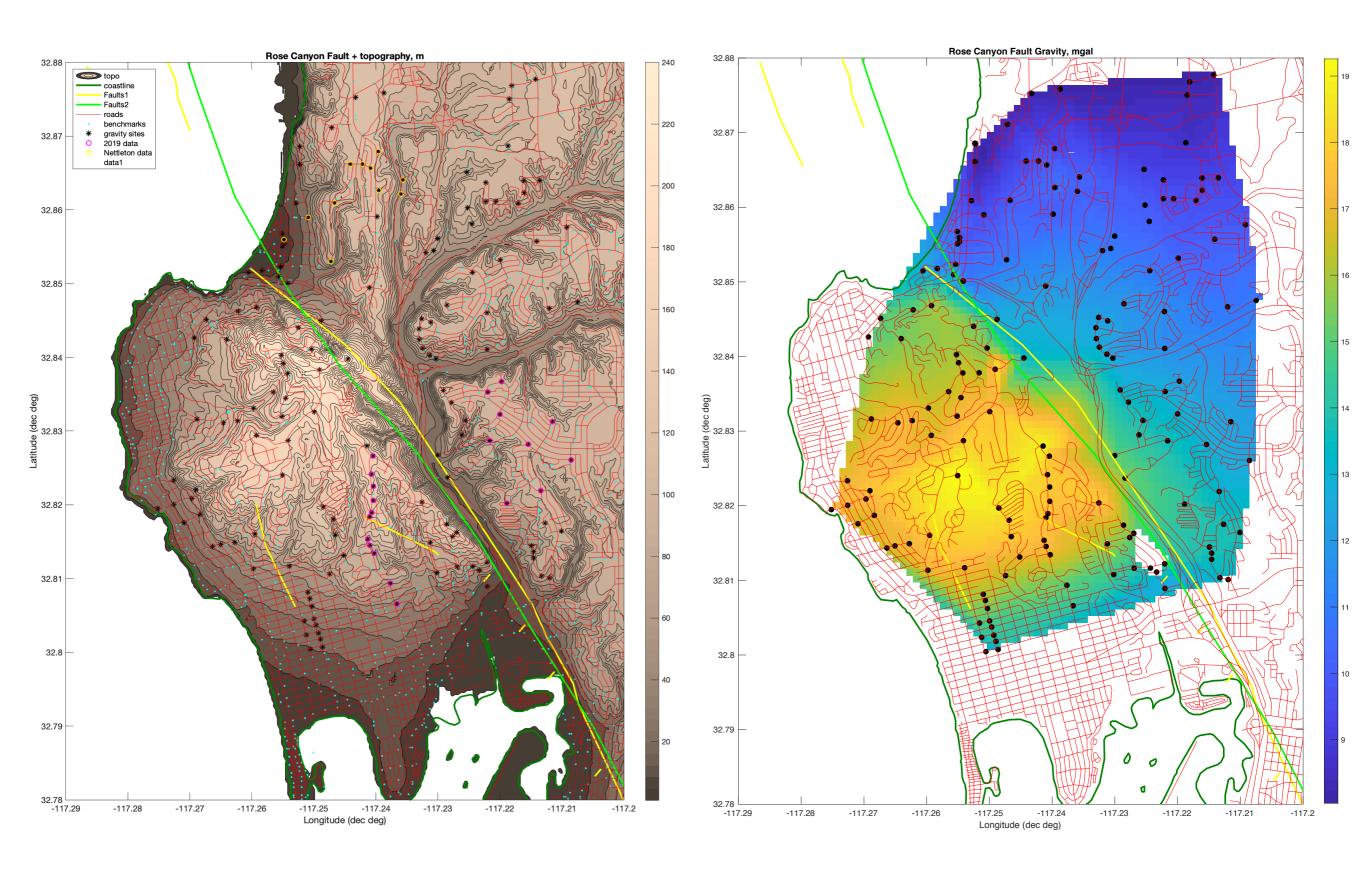

http://deepearthscience.blogspot.com/

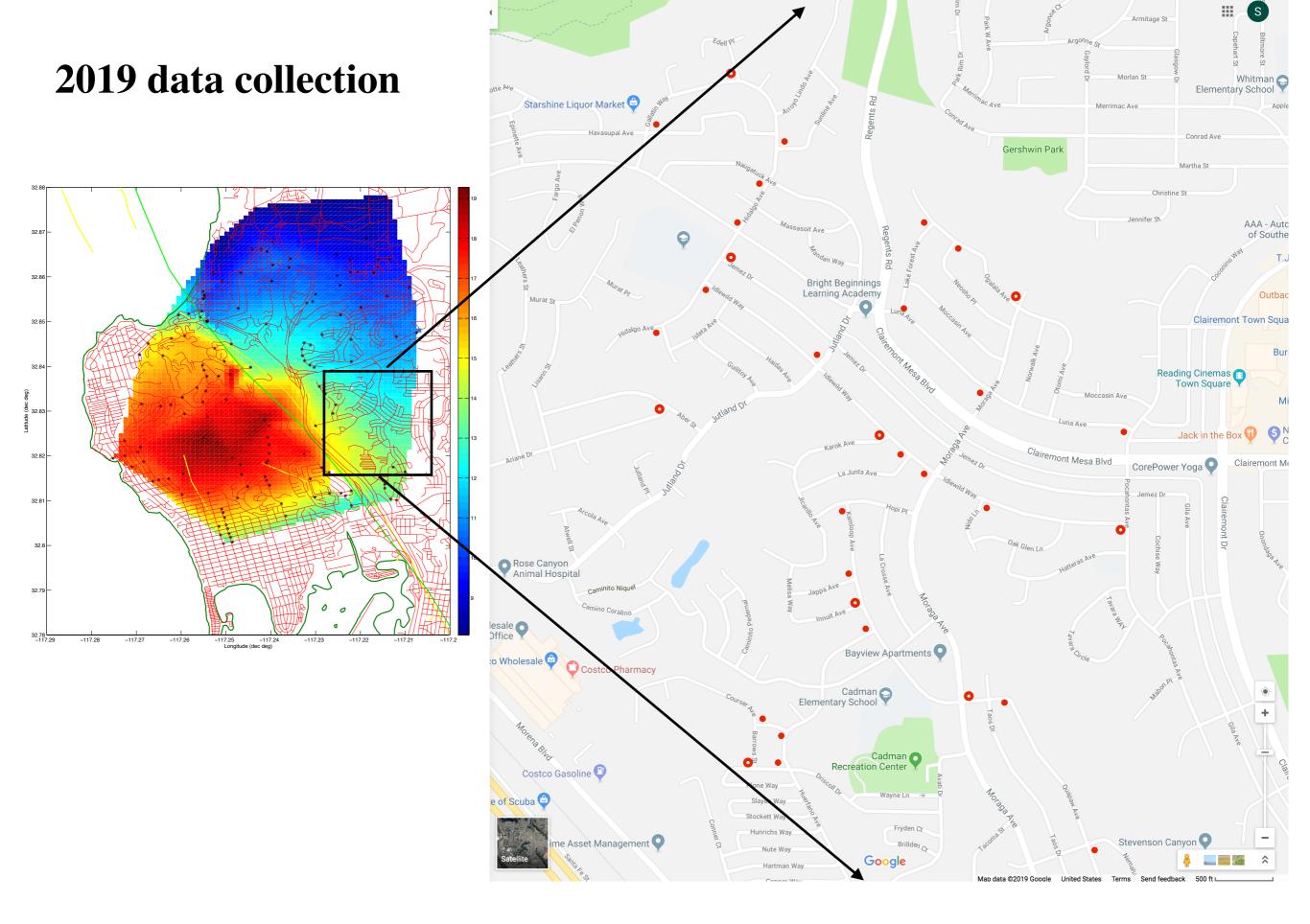


Use of gravimeter number 349.

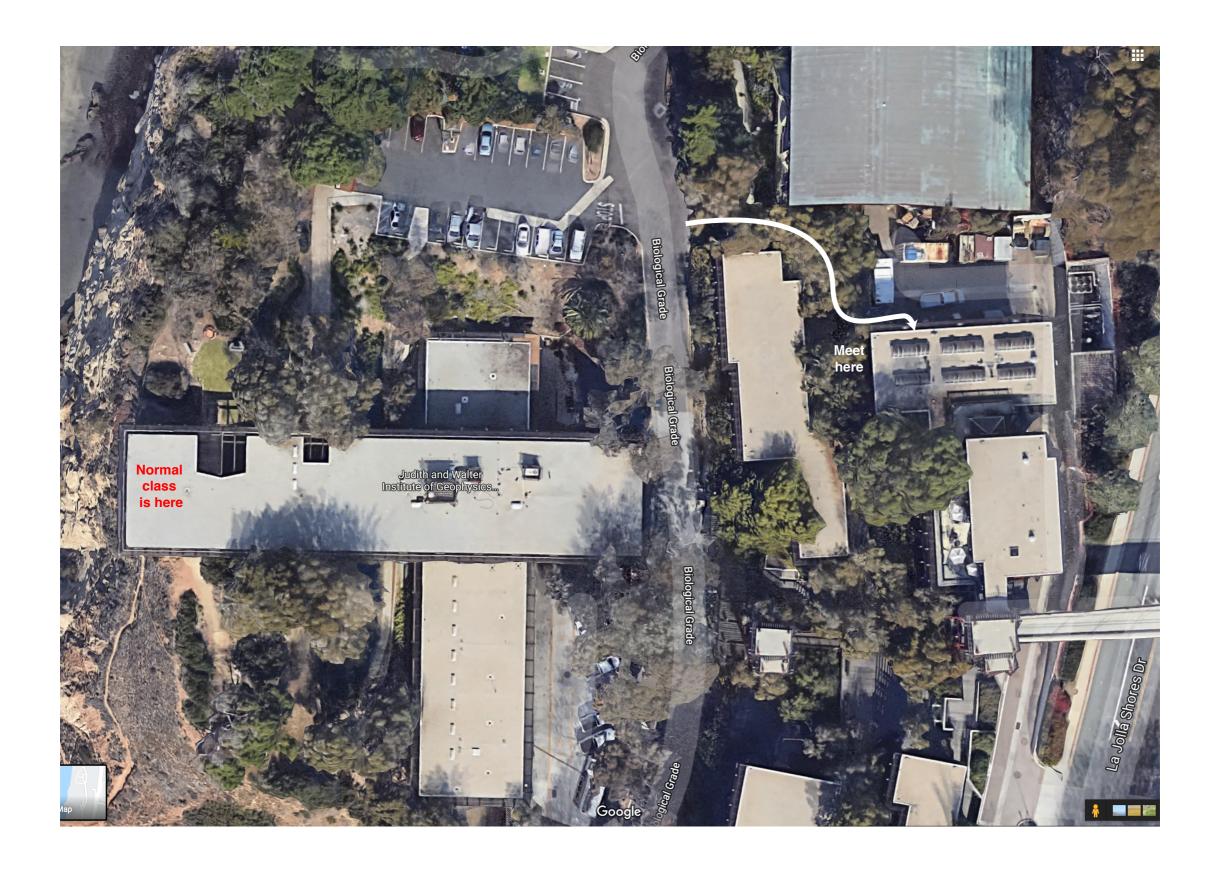

- 1) Set the tripod dish firmly in/on the ground in the position of measurement.
- 2) Open the case and check the beam is locked. Lift the meter out by the levelling screws. Careful! These can come all the way out, so give them a half-turn in (clockwise) to be sure this won't happen.
- 3) Set the meter in the dish and move into a rough level holding the bottom of the meter.
- 4) Turn the two screws on the left in opposite directions to get the up/down level.
- 5) Turn the single screw on the right to get the left-right level. Iterate if needs be.
- 6) Turn on the meter light.
- 7) Unlock the beam.
- 8) Remove your hat.
- 9) Use the main dial to get the beam image to the right of the reading line (2.70). The beam moves in the same direction as the top of the main dial.
- 10) Slowly (!!) turn the main dial until the left edge of the beam is aligned with the reading line (2.70). If you overshoot, return to the right side and approach again from the right. This is to avoid 'backlash' in the mechanism.
- 11) Lock the beam. Read the number from the counter. The last number on the counter corresponds to the numbers on the main dial. The main dial can be read to at least 0.05 units.
- 12) Check the beam lock again. Switch off the meter. Return it to the case.

approach from left


left edge lined up on reading line



AutoGrav CG-5



Mount Soledad gravity:

Base station: Mark Zumberge's laboratory

% 20	<pre>% 2019 Survey Gravimeter: G349, Date: 10 April 2019</pre>									
% I	D	lat	lon	height(f	t) N/E	(100')	Time	Reading	Raw	Station
190	-3	32.86855	-117.25228	154.000	NaN	NaN	14 12	3216.750	0	% Zumberge lab (base) by Steve
192	2789	32.82021	-117.21889	298.177	2392	17025	14 23	3209.295	NaN	% Barrows and Driscoll by Eric
193	10725	32.82190	-117.21337	328.429	2398	17042	14 58	3206.395	NaN	% Kamloop and Moraga by Joseph
194	10000	32.82606	-117.20854	336.659	2413	17057	15 11	3205.670	NaN	% Idlewild and Pocahontas by Ben
195	9996	32.82821	-117.21539	328.822	2421	17036	15 19	3206.665	NaN	% Karok and Idlewild by Alysse
196	2093	32.82871	-117.22159	291.825	2423	17017	15 34	3209.810	NaN	% Ariane and Aber by Sakumaru
197	13467	32.83126	-117.21152	341.792	2432	17048	15 46	3205.645	NaN	% Morega and Ogalala by Kendall
198	9583	32.83230	-117.22000	343.826	2436	17022	16 05	3206.125	NaN	% Jemez and Hidalgo by Shiyue
199	8399	32.83670	-117.21972	344.065	2452	17023	16 18	3205.805	NaN	<pre>% Edwin and Gallatin by Memo</pre>
200	8400	32.83530	-117.22198	353.004	2447	17016	16 29	3205.645	NaN	% Havasupai and Gallatin by Ben
173	-3	32.86855	-117.25228	154.000	NaN	NaN	16 50	3216.825	0	% Zumberge lab (base) by Zhen

COUNTER READING*	VALUE IN FACTOR FOR MILLIGAL INTERVAL		COUNTER READING*	VALUE IN MILLIGAL	FACTOR FOR INTERVAL
					7.7.7.7.
000	000.00	7 06171			
100	106.14	1.06141			
200	212.28	1.06135	e 3600	3822.01	1.06255
300		1.06129	3700	3928.26	1.06255
400	318.41	1.06124	<i>1</i> ≥ 3800 .	4034.52	1.06255
500	424.53	1.06118	3900	4140.77	1.06253
600	530.65	1.06114	4000	4247.02	1.06255
700	636.76	1.06110	4100	4353.28	1.06246
800	742.87	1.06109	4200	4459.53	1.06240
900	848.98	1.06107	4300	4565.77	1.06234
1000	955.09	1.06108	4400	4672.00	1.06227
	1061.20	1.06112	4500	4778.23	1.06218
1100	1167.31	1.06116	4600	4884.44	1.06210
1200	1273.42	1.06120	4700	4990.65	1.06200
1300	1379.54	1.06125	4800	5096.85	1.06188
1400	1485.67	1.06130	4900	5203.04	1.06175
1500	1591.80	1.06135	5000	5309.22	1.06160
1600	1697.93	1.06140	5100	5415.38	1.06144
1700	1804.07	1.06145	5200	5521.52	
1800	1910.22	1.06151	5.300	5627.65	1.06125
1900	2016.37	1.06158	5400	5733.75	1.06105
2000	2122.53	1.06165	5500	5839.84	1.06085
2100	2228.69	1.06171	5600	5945.90	1.06061
2200	2334.86	1.06180	5700	6051.93	1.06035
2300	2441.04	1.06188	5800	6157.94	1.06007
2400	2547.23	1.06196		6263.92	1.05977
2500	2653.43	1.06205	6000	6369.86	1.05945
2600	2759.63	1.06212	6100		1.05913
2700	2865.84	1.06220	6200	6475.77	1.05877
2800	. 2972.06	1.06226	6300	6581.65	1.05840
2900	3078.29	1.06233	6400	6687.49	1.05804
3000	3184.52	1.06238	6500	6793.30	1.05765
3100	3290.76	1.06243	6600	6899.06	1.05728
3200	3397.00350		6700	7004.79	1.05685
3300	3503.25	1.06250		7110.47	1.05641
3400	3609,50	1.06252	6800	7216.11	1.05590
3500	3715.75	1.06254	6900	7321.70	1.05550
**	22613	1.00234	7000	7427.25	

^{*} Note: Right-b nd wheel on counter indicates approximately 0.1 milligal.

¹²⁻¹³⁻⁷³

COUNTER READING*	VALUE IN MILLIGAL	FACTOR FOR INTERVAL	COUNTER READING*	VALUE IN MILLIGAL	FACTOR FOR INTERVAL	
	273.					
000	000.00	1.06141				
100	106.14	1.06135	c 2600			
200	212.28	1.06129	6 3600	3822.01	1.06255	
300	318.41	1.06124	3800	3928.26	1.06255	
400	424.53	1.06118		4034.52	1.06255	
500	530.65	1.06114	3900	4140.77	1.06253	2205 005 207 -
600	636.76	1.06110	4000	4247.02	1.06255	3205.805 mu =
700	742.87	1.06109	4100	4353.28	1.06246	
800	848.98	1.06107	4200	4459.53	1.06240	3397.00 +
900	955.09	1.06108	4400	4565.77	1.06234	/3371.00
1000	1061.20	1.06112	4500	4672.00	1.06227	
1100	1167.31	1.06116	4600	4778.23	1.06218	1.06246×5.805
1200	1273.42	1.06120	4700	4884.44	1.06210	1100210 11 01000
1300	1379.54	1.06125	4800	4990.65	1.06200	
1400	1485.67	1.06130	4900	5096.85	1.06188	
1500	1591.80	1.06135	5000	5203.04	1.06175	
1600	1697.93	1.06140	5100	5309.22	1.06160	
1700	1804.07	1.06145	5200	5415.28	1.06144	
1800	1910.22	1.06151	5300	552 7. 52 5627.65	1.06125	
1900	2016.37	1.06158	5400	5733.75	1.06105	
2000	2122.53	1.06165	5500		1.06085	
2100	2228.69	1.06171	5600	5839.84 5945.90	1.06061	
2200	2334.86	1.06180	5700	6051.93	2.06035	
2300	2441.04	1.06188	5800	6157.94	1.06007	
2400	2547.23	1.06196	5900	6263.92	1.05977	
2500	2653.43	1.06205	6000	6369.86	1.05945	
2600	2759.63	1.06212	6100	6475.77	1.05913	
2700	2865.84	1.06220	6200	6581.65	1.05877	
2800	2972.06	1,06226	6308	6687.49	1.05840	
2900	3078.29	1.06233	8400	6793.30	1.05804	
3000	3184.52	1.06238	6500	6899.06	1.05765	
3100	3290.76	1.06.243	6600		1.05728	
3200	3397.00350	1.0624635721	6700	7004.79 7110.47	1.05685	
3300	3503.25	1.06250	6800	7216.11	1.05641	
3400	3609,50	1.06252	6900	7321.70	1.05590 1.05550	
3500	3715.75			1 341 . [1]	1 (1)	

^{*} Note: Right-h nd wheel on counter indicates approximately 0.1 milligal.