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Why mantle electrical conductivity?

• Highly senstitive to phase transitions

• Sensitive to mantle temperature

• Influenced by volatiles and trace materials

Water has a big effect on electrical conductivity.

Electrical conductivity studies can be used to
directly infer water content in the mantle

... but it’s a risky business.
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A lot of things have to be done correctly to get useful mantle properties:
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Surface conductivity is dominated by the oceans and water in crustal rocks:
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Mantle Conductivity Dominated by Semiconduction
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Electrical Conduction in Dry Olivine

Point defects in olivine:

V ′′
Mg Magnesium vacancies

Fe•Mg Small polaron

e′ Electrons

V ′′′′
Si Silicon vacancies
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8Fe×Mg + 2O2 ⇀↽ 2V
′′

Mg + V
′′′′

Si + 4O×
O + 8Fe•Mg

San Quintin Dunite

CO2:CO

CO2:CO

Olivine

Iron

M
agnetite
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Thermoelectric PowerQ:

Hotter

Colder

electrode

electrode

sample

Q = − lim
∆T→0

∆V
∆T
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Conductivity equations:

σtotal = σFe + σe + σMg = [Fe•Mg]µFee + neµee + 2[V
′′

Mg]µMge

Thermopower equations:

Qtotal = QFe

σh

σ
+ Qe

σe

σ
+ QMg

σ
Mg

σ

QMg =
k

e
ln

(1− [V
′′

Mg]/[Mg×Mg])

[V
′′

Mg]/[Mg×Mg]

Qe =
k

e

{
ln

[ne

2

( h2

2πm∗kT

)3/2]− 3
2

}

QFe =
k

e
ln 2

(1− [Fe•Mg]/[Fe×Mg])

[Fe•Mg]/[Fe×Mg]

Solve using non-linear parameter estimation:

µx = cxe
−Ax/kT [X] = bx + axf

1/6

O2
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Fits to data:

(no electrons needed)

µ
Fe

= 12.2× 10−6e−1.05 eV/kT

µ
Mg

= 2.72× 10−6e−1.09 eV/kT

(m2V−1s−1)

[Fe•Mg] ≈ [V
′′

Mg] ≈ 1024 m−3
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Standard Electrical Olivine model 3
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for mobilities
µ

Fe
= 12 .2× 10−6e−1.05 eV kT

µ
Mg

= 2 .72× 10−6e−1.09 eV kT

and concentrations

[Fe•Mg] = b
Fe

(T ) + 3.33× 1024e−0.02 eV kT f
1/6
O2

[V 

Mg] = b
Mg

(T ) + 6.21× 1030e−1.83 eV kT f
1/6
O2

derived from fitting conductivity and thermopower data in silica-buffered
polycrystal at lower T.

/

/
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Using induction to measure Earth conductivity:

• Magnetotelluric (MT) method

Measure electric and magnetic fields

• Geomagnetic depth sounding (GDS)

Measure horizontal and vertical magnetic fields

• Controlled-Source EM:

Measure E and/or B generated by man-made transmitter
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A time-varying magnetic field:

Bprimary

J = σE Bsecondary

Faraday’s Law:
∮

C
E · dl = −dΦ

dt

Ohm’s Law: J = σE

Ampere’s Law:
∮

C
B · dl = µI
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Magnetotelluric Method:
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Magnetotelluric Method:

1.81.61.41.210.80.60.40.20
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Geomagnetic Depth Sounding:

external

internal

Exploits the geometry associated with the geomagnetic ring current.

σ(ω) =
internal(ω)
external(ω)
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Geomagnetic Depth Sounding:

Can use either magnetic observatory network, or satellite measurements.
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Globally Averaged Response Functions:

Kuvshinov & Olsen, 2006
Kuvshinov & Olsen, correctedKuvshinov & Olsen, 2006

General agreement but still some scatter.
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Selected observatory data set (Medin et al.):
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Inverse theory at play:
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Good agreement with laboratory studies.

But what about water ..... ?
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It all started in 1990...

Karato, Nature 1990
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Karato ignored many things, including the anisotropy of hydrogen diffusion...

Karato, Nature 1990 Constable, Nature 1993
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... and that high conductivities came from distorted marine MT measurements:
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To this day, measurements from marine MT, and possibly distorted land MT,
drive the discussion.

Laboratory measurements of hydrogen in olivine are notoriously hard – 18 years
post-Karato we are still in the dark about hydrogen’s effect on olivine conductiv-
ity...
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LETTERS
The e�ect of water on the electrical conductivity
of olivine
Duojun Wang1,2,3, Mainak Mookherjee 3, Yousheng Xu3,4 & Shun-ichiro Karato 3

Vol 443 | 26 October 2006 |doi:10.1038/nature05256
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LETTERS
Hydrous olivine unable to account for conductivity
anomaly at the top of the asthenosphere
Takashi Yoshino 1, Takuya Matsuzaki 1, Shigeru Yamashita 1 & Tomoo Katsura 1
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Dry transition zone minerals:

Yousheng Xu, Thomas J. Shankland, and Brent T. Poe

Figure 8. Laboratory-based conductivity-depth profile compared with geophysical models. Shaded
areas illustrate the effect on the model of a ±100 C temperature variation. The laboratory-based profile is
similar to BD if it is considered as a three-layer mantle and similar to Olsen99 if it is smoothed.
Geophysical models shown are AGLHS99 [Alexandrescu et al., 1999], SKCJ93 [Schultz et al., 1993],
BD [Bahr and Duba , 1999], and Olsen99 [Olsen, 1999].

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B6, 2314, doi:10.1029/2003JB002552, 2003

3 4 5 6 7 8 9
-1000

-500

0

500

1000

10 10 10 10 10 10 10

1500

2000

2500

3000

Period, s

C
, k

m

Im(c)

Real(c)

Admittance, km

0 500 1000 1500 2000 2500 3000
10−3

10−2

10−1

100

101

102

103

Depth, km

C
on

du
ct

iv
ity

, S
/m

SEO3-QFM at 1400°C

SEO3-IW at 1400°C

Pe
ro

vs
ki

te
 a

t 2
00

0°
C

Ringwoodite/
Wadsleyite at 1500°C

U
PP

ER
 M

A
N

TL
E TR

A
N

SI
TI

O
N

 Z
O

N
E

LO
W

ER
 M

A
N

TL
E C

O
R

E

26

SC
RI

PP
S 

IN
ST

ITUTION OF OCEANOG
RAPHY

UCSD

CONDUCTIVITY AND WATER IN THE MANTLE



Hirschmann argues that effects offO2
not properly considered.

NATURE |Vol 439 |26 January 2006 BRIEF COMMUNICATIONS ARISING

�e suggestion that the transition zone of
Earth’s mantle (410–670 km in depth) is

ductivity of mantle minerals may be critically
dependent on oxygen state and assume that
the oxygen fugacity of the transition zone of
the Earth is similar to conditions imposed by
the coexistence of nickel metal and NiO, which

is about four orders of magnitude more oxi-
dizing than their experiments. Accordingly,

grain size or secondary phases. Consequently,
some uncertainty remains in relating labora-

EARTH SCIENCE

A wet mantle conductor?
Arising from: X. Huang, Y. Xu & S. Karato Nature434, 746–749 (2005)

Inference of the spatial distribution of water
content in the mantle is critical to our under-
standing of the dynamics of Earth’s interior. A
model1 has been described that indicates there
may be a jump in water content at the 410-km
discontinuity in the Earth’s mantle. From the
electrical conductivity, we have inferred2 the
water content in the transition zone and con-

olivine4 and wadsleyite are compared with
geophysical measurements of the electrical-
conductivity jump at 410 km depth (ref. 5).
Using the model of Huang et al.2, a jump 
in electrical conductivity at 410 km can be
expressed in terms of a jump in oxygen fug-
acity and water content as 

EARTH SCIENCE

Huang et al. reply
Replying to: M. Hirschmann Nature439, doi:10.1038/nature04528 (2005)
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Whole-mantle convection and the
transition-zone water �lter
David Bercovici & Shun-ichiro Karato

Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, Connecticut 06520-8109, USA

............................................................................................................................... ............................................................................................

hypothesis

Argue that water in the
transition zone will cause
melting at the base of the
upper mantle.

Surely something we can
test with EM ...
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... by adding a 10 km, 0.1 S/m layer to our model:
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In fact, the biggest conductor you can hide is 10 times smaller, and has to be
balanced by an unreasonably resistive upper mantle.
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Mantle water undoubtedly exists, and will lower melting point:

Dry peridotite solidus
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Also can cause serpentinization of olivine in the uppermost mantle:
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Anisotropy is between the Moho and the max. depth of serpentine stability:
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Some Conclusions:

• Dry olivine conductivity is thoroughly understood - probably the only major
mantle mineral for which we can say this

• GDS measurements are compatible with a dry upper mantle

•MT data cited in support of a mantle conductivity enhanced by water are almost
certainly highly distorted

• Laboratory conductivity studies on the effect of water are extremely difficult,
and yet to be conclusive

• A ubiquitous transition zone melt layer does not exist

• The biggest effect of water on mantle conductivity is through depression of the
melting point
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Future Directions:

• Subduction zones are an excellent place to study the effects of water on the
mantle– we intend to do this

• Improved GDS estimates from satellites will constrain radial conductivity struc-
ture even more tightly and illuminate any 3D effects

• More laboratory work on conductivity is needed, particularly under controlled
fO2

conditions
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