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Why mantle electrical conductivity?
¢ Highly senstitive to phase transitions

e Sensitive to mantle temperature

FTHERISK & Influenced by volatiles and trace materials
N TR shock ° y

Water has a big effect on electrical conductivity

Electrical conductivity studies can be used t
directly infer water content in the mantle

... butit’s a risky business.
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A lot of things have to be done correctly to get useful mantle properties:
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Surface conductivity is dominated by the oceans and water in crustal rocks:
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Electrical Conduction in Dry Olivine

Point defects in olivine;

V](’@ Magnesium vacancies

[ J
FeMg Small polaron

. Electrons

Vé’i” Silicon vacancies
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Thermoelectric PowerQ:
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Conductivity equations:
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Thermopower equations:
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Solve using non-linear parameter estimation:

_ 1/6
Hx = Cxe A/RT [X] = bx +&fq,
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X
Fits to data: 3
(no electrons needed) §
[, = 12.2 % 10_66_1'05 eV/kT .,E,

(mZV_ls_l)

[Fegy ] ~ [Vj{’@] ~ 10?4 m~3
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Standard Electrical Olivine model 3
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Using induction to measure Earth conductivity:
e Magnetotelluric (MT) method
Measure electric and magnetic fields
e Geomagnetic depth sounding (GDS)
Measure horizontal and vertical magnetic fields
e Controlled-Source EM:

Measure E and/or B generated by man-made transmitter
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A time-varying magnetic field:

Faraday’s Law: 7{ E.dl = _do Bprimary
C d
Ohm’s Law: J=0oE
Ampere’s Law: ]{ B.-dl =pul
C
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Magnetotelluric Method:
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Magnetotelluric Method:
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Geomagnetic Depth Sounding:

external

A A

internal

Y

Exploits the geometry associated with the geomagnetic ring current.

o(w) =

_internal(w)

external(w)
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Geomagnetic Depth Sounding:
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Globally Averaged Response Functions:
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General agreement but still some scatter.
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Inverse theory at play:
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Good agreement with laboratory studies.

But what about water ..... ?
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It all started in 1990...
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Karato ignored many things, including the anisotropy of hydrogen diffusion..

Electrical conductivity (S m™1)
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... and that high conductivities came from distorted marine MT measuremer

Depth(m)

TM Mode Current Streamlines Near Bathmetry:
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To this day, measurements from marine MT, and possibly distorted land
drive the discussion.

Laboratory measurements of hydrogen in olivine are notoriously hard — 18 y
post-Karato we are still in the dark about hydrogen’s effect on olivine conduc

ity...
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Vol 443 |26 October 2006 |doi:10.1038/nature05256 nature

LETTERS

The effect of water on the electrical conductivity
of olivine

Duojun Wang'#3, Mainak Mookherjee 3, Yousheng Xu>* & Shun-ichiro Karato *
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Vol 443 |26 October 2006 |doi:10.1038/nature05223

nature

LETTERS

Hydrous olivine unable to account for conductivity
anomaly at the top of the asthenosphere

Takashi Yoshino ', Takuya Matsuzaki ', Shigeru Yamashita' & Tomoo Katsura '

Little anisotropy
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Dry transition zone minerals:

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B6, 2314, doi:10.1029/2003JB002552, 2003
Yousheng Xu, Thomas J. Shankland, and Brent T. Poe
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NATURE |Vol 439 |26 January 2006

EARTH SCIENCE

BRIEF COMMUNICATIONS ARISING

A wet mantle conductor?

Arising from: X. Huang, Y. Xu & S.Karato  Nature 434, 746-749 (2005)

The suggestion that the transition zone of
Earth’s mantle (410-670 km in depth) is

ductivity of mantle minerals may be critically
dependent on oxygen state and assume that
the oxygen fugacity of the transition zone of
the Earth is similar to conditions imposed by
the coexistence of nickel metal and NiO, which
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Figure 1| Electrical conductivity versus depth in

is about four orders of magnitude more oxi-
dizing than their experiments. Accordingly,

grain size or secondary phases. Consequently,
some uncertainty remains in relating labora-

EARTH SCIENCE

Huanget al. reply

Replying to: M. Hirschmann Nature 439, doi:10.1038/nature04528 (2005)

Inference of the spatial distribution of water
content in the mantle is critical to our under-
standing of the dynamics of Earth’s interior. A
model" has been described that indicates there
may be a jump in water content at the 410-km
discontinuity in the Earth’s mantle. From the
electrical conductivity, we have inferred” the
water content in the transition zone and con-

olivine* and wadsleyite are compared with
geophysical measurements of the electrical-
conductivity jump at 410 km depth (ref. 5).
Using the model of Huang et al’ a jump
in electrical conductivity at 410 km can be
expressed in terms of a jump in oxygen fug-
acity and water content as

Hirschmann argues that effects fy, not properly considered.
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hypothesis

Whole-mantle convection and the
transition-zone water filter

David Bercovici & Shun-ichiro Karato

Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, Connecticut 06520-8109, USA

Mid-ocean ridge

Argue that water in the
transition zone will cause
melting at the base of the
upper mantle.

Surely something we can
test with EM ...



... by adding a 10 km, 0.1 S/m layer to our model:
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In fact, the biggest conductor you can hide is 10 times smaller, and has t
balanced by an unreasonably resistive upper mantle.
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Mantle water undoubtedly exists, and will lower melting point:
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the uppermost mantle:
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30 km

Receiver

Paleo-spreading direction

SV A
AN

Shshs

N2 S A2 S\
A
2

NP SSISTISTI Sty ss
NIINTINTINTINN
S

o\

YA

<
IV
AT

STISTI st s
MR
NS 32

1INTI SISt
s heshoslos,
Lrslrs s s

RS IR
s heshes ool
AR
RS RS RS IS S
NSNS S NSNS NS,
SISSIsSIc SIS
ARSI VRS
s e s e s oS hos i
AR

©
©
x
x
8
£
a

36°
34°
32°

&
=}
=]

1 spreadi

si

30°

28°

Pmin x 10'°

130°  128° 126° 124° 122° 120° 118° 116°

132°

L
=l
[
<
<
=
LU
L
[
=
oc
=
<
=
[a]
<
<
>
=
=
[
()
=2
[a]
<
o
)

31



Anisotropy is between the Moho and the max. depth of serpentine stability:
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Some Conclusions:

e Dry olivine conductivity is thoroughly understood - probably the only maj
mantle mineral for which we can say this

e GDS measurements are compatible with a dry upper mantle

e MT data cited in support of a mantle conductivity enhanced by water are alr
certainly highly distorted

e Laboratory conductivity studies on the effect of water are extremely diffici
and yet to be conclusive

¢ A ubiquitous transition zone melt layer does not exist

e The biggest effect of water on mantle conductivity is through depression of
melting point
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Future Directions:

e Subduction zones are an excellent place to study the effects of water ol
mantle— we intend to do this

e Improved GDS estimates from satellites will constrain radial conductivity str
ture even more tightly and illuminate any 3D effects

e More laboratory work on conductivity is needed, particularly under control
fo, conditions
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